La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

L’orologio atomico Prof.ssa M.Tuzi PLS-Misura del tempo a.s. 2010-2011.

Presentazioni simili


Presentazione sul tema: "L’orologio atomico Prof.ssa M.Tuzi PLS-Misura del tempo a.s. 2010-2011."— Transcript della presentazione:

1 L’orologio atomico Prof.ssa M.Tuzi PLS-Misura del tempo a.s

2 Perché gli orologi atomici?
Elevata stabilità e accuratezza dell’ordine di 10-15 s. Per avere un’idea concreta dell’accuratezza di un orologio associato ad un campione delle ultime generazioni: ammesso che possa funzionare così a lungo, il dispositivo impiegherebbe circa 30 milioni di anni per accumulare uno scarto di un secondo. Indipendenza da parametri esterni. Il loro funzionamento dipende idealmente solo dalle proprietà degli atomi, in particolare dalla differenza tra due livelli energetici, e hanno quindi scarsa sensibilità ai fattori ambientali.

3 Cronologia dell’orologio atomico
1949 – H. Lyons presso il National Bureau of Standards realizza il primo tipo di orologio, usando il gas di ammoniaca. 1951- Viene costruito il primo di orologio atomico che utilizza il cesio, detto NBS -1. In Gran Bretagna presso il National Physical Laboratory, L. Essen e J.V.L. Parry realizzano e collaudano l’oscillatore atomico a fascio di cesio. Intorno al 1960 compaiono in commercio i primi orologi atomici al fascio di cesio, questi si diffondono rapidamente nei laboratori che operano nel settore della metrologia del tempo.

4 Dopo la storica realizzazione sperimentale di Essen e Parry, si sono succeduti diversi modelli, L’ultima generazione di campioni al cesio da laboratorio è quello della fontana atomica (1995).

5

6 Campione a fascio di cesio Hewlett Packard mod. 5071A
Oltre ai campioni sperimentali di laboratorio esistono anche campioni commerciali. Quest’ultimi hanno dimensioni ridotte rispetto ai primi (cavità risonante di grandezza inferiore), accuratezza minore, ma disponibilità maggiore.

7 “il secondo è la durata di 9 192 631 770 periodi
La attuale definizione del secondo è stata adottata dalla 13ma Conferenza Generale sui Pesi e le Misure (CGPM) del 1967 “il secondo è la durata di periodi della radiazione corrispondente alla transizione tra due livelli iperfini dell’atomo di cesio -133” Il Comite International des Poids et Mesures (CIPM) ha imposto nel a questa definizione la seguente specifica: “ci si riferisce ad un atomo di cesio a riposo ed alla temperatura termodinamica di 0 K”

8 Perché il cesio? La qualità di una transizione atomica ai fini della definizione di uno standard di frequenza è misurata dal suo fattore di merito Q. Il cesio, tra i metalli alcalini stabili, ha un’alta frequenza di transizione tra i livelli iperfini dello stato fondamentale e un ottimo Q. Esiste un solo isotopo stabile del cesio, il cesio-133. Il cesio possiede il più basso punto di fusione e la più alta pressione di vapore tra i metalli alcalini.

9 Quali sono le caratteristiche del cesio?
Il Cesio ha 55 protoni nel nucleo e 55 elettroni intorno ad esso. Sono riempiti tutti gli stati elettronici che fanno parte del gas nobile xenon (54 elettroni) fino al livello 5p e poi c'è solo un elettrone fuori da tale distribuzione. Nel livello successivo di energia disponibile c’è l'elettrone 6s, così la chimica del cesio è determinato da quest’ultimo elettrone.

10 La struttura iperfine Il nucleo del 133Cs ha un momento magnetico il cui campo interagisce con gli elettroni; ne consegue che quello che si pensa comunemente come stato fondamentale, in realtà non è un singolo livello energetico, ma è separato in due sottolivelli. La spaziatura in energia fra questi sottolivelli è molto piccola: circa 4·10-5eV. Per questo motivo si parla di struttura iperfina. C'è un numero quantico che classifica i livelli della struttura iperfina, solitamente indicato con F: i due sottolivelli hanno F=3 (il più basso) e F=4 (il più alto).

11 Transizione tra livelli energetici
Alla transizione fra i due sottolivelli corrisponde un'emissione o un assorbimento di fotoni della corrispondente energia. La frequenza di questa radiazione (circa 9  GHz) è del tipo delle microonde: la lunghezza d'onda è qualche centimetro.

12 Funzionamento di un orologio al cesio

13 Col primo separatore si escludono dal fascio gli atomi con F=3, lasciando solo quelli con F=4.
Il fascio attraversa una cavità che ha una frequenza di risonanza corrispondente alla transizione fra i sottolivelli iperfini; se nella cavità c'è un campo elettromagnetico a quella frequenza, esso induce la transizione da 4 a 3. Il campo è generato da un oscillatore esterno, mantenuto alla frequenza necessaria per la transizione. Dato che il livello 4 è più alto, si tratterà di un'emissione stimolata. All’uscita dalla cavità gli atomi rimasti nello stato 4 vengono eliminati con un secondo separatore magnetico, e i restanti inviati a un rivelatore, il quale dà un segnale proporzionale al numero di atomi che riceve per unità di tempo. Se la frequenza non è quella giusta per produrre le transizioni, gli atomi in uscita sul livello 3 sono ridotti in numero o addirittura scompaiono: il rivelatore se ne accorge e fornisce un segnale diverso.

14 La variazione del segnale viene usata per creare un segnale di correzione che viene riportato all'oscillatore. Quindi, sebbene l'oscillatore non sia perfetto, esso resta “agganciato” alla frequenza di transizione degli atomi (la frequenza corrispondente alla distanza fra i due livelli iperfini :frequenza naturale eccitazione dell'atomo) e viene mantenuto lì, perché quando si sposta automaticamente nasce un segnale di correzione (servo-loop). Il segnale che esce dall'oscillatore, così “agganciato” alla frequenza della transizione atomica, viene mandato a un amplificatore oscillazioni (nel caso di Cs-133) rappresentano un secondo

15 La grandezza significativa è:
La frequenza di transizione tra livelli energetici. Nella cavità vengono inviate microonde con frequenze prossime alla frequenza naturale dell’oscillatore atomico: fenomeno della risonanza. Si produce una emissione stimolata.

16 Il fattore di merito Q Il fattore di merito è un parametro adimensionale che confronta la costante di tempo della fase decrescente dell'ampiezza di un sistema fisico oscillante con il suo periodo di oscillazione. In maniera equivalente confronta la frequenza alla quale un sistema oscilla con il tasso di dissipazione di energia. Un Q più alto indica un minor tasso di dissipazione di energia rispetto alla frequenza di oscillazione, per cui le oscillazioni si smorzano più lentamente. Per esempio, un pendolo di alta qualità, sospeso in aria, avrebbe un alto Q, mentre un pendolo immerso in olio ne avrebbe uno basso. Ampiezza Frequenza di picco (fc nell'immagine) e larghezza di banda (Bandwith): Δf =f2 - f1 Un'altra interpretazione del fattore di merito, è data da: frequenza

17 Per l’orologio atomico
Si definisce il rapporto dove C è una costante dell’ordine dell’unità, T è il tempo da misurare, N è il numero di atomi e M è il numero totale delle misure. La stabilità dell’orologio è massima quando Δf/f0 è minimo.


Scaricare ppt "L’orologio atomico Prof.ssa M.Tuzi PLS-Misura del tempo a.s. 2010-2011."

Presentazioni simili


Annunci Google