La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

LEZIONE DEL 16 NOVEMBRE 2006 EUREKA! GIOCANDO. METTI ALLA PROVA LE TUE CAPACITÀ DI RAZIOCINIO.

Presentazioni simili


Presentazione sul tema: "LEZIONE DEL 16 NOVEMBRE 2006 EUREKA! GIOCANDO. METTI ALLA PROVA LE TUE CAPACITÀ DI RAZIOCINIO."— Transcript della presentazione:

1 LEZIONE DEL 16 NOVEMBRE 2006 EUREKA! GIOCANDO

2 METTI ALLA PROVA LE TUE CAPACITÀ DI RAZIOCINIO

3 PER ORA ADOPERIAMO SOLO LA LOGICA

4 Ci sono tre carte davanti a voi; coperte, una accanto all'altra su un tavolo. Di queste tre carte due sono assi e una è un fante. Io so qual è il fante e quali sono i due assi, ma voi no. La sfida è che voi individuiate uno dei due assi, indicandomi, senza scoprirla, una delle tre carte e facendomi una sola domanda che ammetta una semplice risposta "si" oppure "no". La regola è che io risponderò il vero se voi (a vostra insaputa) avete indicato un asso, e che risponderò, invece, a caso il vero o il falso se voi (a vostra insaputa) avete indicato il fante. GIOCO DELLE TRE CARTE

5 nella carta 2 cè un asso? CARTA 1 CARTA 2 CARTA 3 SOLUZIONE: nella carta 2 cè certamente un asso. SÌ

6 nella carta 2 cè un asso? CARTA 1 CARTA 2 CARTA 3 NO SOLUZIONE: nella carta 1 cè certamente un asso.

7 Si può ragionare come segue. Si indica ad es. la terza carta (quella in base alla quale io decido se mentire o dire la verità), e si chiede: la carta al centro è un asso? SOLUZIONE "GIOCO DELLE TRE CARTE Se la terza carta è un asso io devo essere sincero. Quindi, se la carta centrale è un asso, dirò si, altrimenti dirò no. Si sceglie la seconda carta se ho detto si, la prima se ho detto no. Se invece la terza carta è un fante, io posso scegliere se mentire o essere sincero, ma le altre due carte sono entrambe assi. Quindi, si sceglierà la seconda carta se ho detto si, la prima se ho detto no. Il risultato non cambia perché in questo caso sia la seconda che la prima sono assi.

8 AAF AFA FAA Caso I Caso II Caso III Se rispondo sì vuol dire che siamo o nel caso I o nel caso III, quindi devi scegliere la carta 2 Se rispondo no vuol dire che siamo o nel caso I o nel caso II, quindi devi scegliere la carta 1 SPIEGAZIONE SCHEMATIZZATA A=asso F=fante Nella tabella sono descritti i casi possibili Carta 1Carta 2Carta 3 PORZIA Si può ragionare anche come segue

9 nella carta 2 cè un fante? CARTA 1 CARTA 2 CARTA 3 SOLUZIONE: nella carta 1 cè certamente un asso. SÌ Si può fare anche una domanda diversa e indicare una qualunque delle tre carte

10 nella carta 2 cè un fante? CARTA 1 CARTA 2 CARTA 3 NO SOLUZIONE: nella carta 2 cè certamente un asso.

11 Se rispondo no vuol dire che siamo o nel caso I o nel caso III, quindi devi scegliere la carta 2. SPIEGAZIONE SCHEMATIZZATA AAF AFA FAA Caso I Caso II Caso III A=asso F=fante Carta 1Carta 2Carta 3 Se rispondo sì vuol dire che siamo o nel caso I o nel caso II, quindi devi scegliere la carta 1.

12 IL MISTERO DEGLI SCRIGNI DI PORZIA Nel Mercante di Venezia di Shakespeare, Porzia aveva tre scrigni, uno doro, uno dargento e uno di piombo e in uno cera il suo ritratto. Il pretendente di Porzia doveva scegliere uno scrigno e se fosse stato tanto fortunato, o tanto saggio, da scegliere quello con il ritratto, avrebbe avuto diritto alla mano di Porzia. Sul coperchio di ogni scrigno cera uniscrizione che aveva lo scopo di aiutare il pretendente a scegliere correttamente. IL RITRATTO E IN QUESTO SCRIGNO A: Scrigno doro IL RITRATTO NON È IN QUESTO SCRIGNO B: Scrigno dargento IL RITRATTO NON È NELLO SCRIGNO DORO C: Scrigno di piombo Porzia dava, inoltre, unaltra indicazione: delle tre affermazioni una sola era vera.

13 Se il ritratto fosse stato dentro il primo scrigno due affermazioni risultavano vere: la A e la B, contraddicendo la premessa di Porzia ; SOLUZIONE SCRIGNI DI PORZIA Se il ritratto fosse stato nel terzo scrigno ci sarebbero state pure due affermazioni vere: la B e la C, contraddicendo anche in questo caso la premessa di Porzia. Solo nel caso in cui si suppone che il ritratto sia nello scrigno dargento non si contraddice l ipotesi iniziale, e cioè si ha che una sola affermazione è vera: laffermazione C. Per arrivare ad una soluzione ragionata, e non tentare la fortuna, il pretendente di Porzia non poteva fare altro che procedere nel seguente modo:

14 1. Tutti hanno paura di Dracula 2. Dracula ha paura soltanto di me 3.Quindi io sono Dracula. Sembra una barzelletta ma invece è un ragionamento corretto, la conclusione segue necessariamente dalle premesse. Perché? DRACULA

15 Conseguenza della prima affermazione: se tutti hanno paura di DRACULA anche DRACULA ha paura di se stesso. Conseguenze della seconda osservazione: se DRACULA ha paura solamente di me, allora ha paura di una sola persona, ma siccome ha paura anche di se stesso, io e DRACULA dobbiamo necessariamente coincidere, essere cioè la stessa persona. SOLUZIONE DRACULA

16 COSÌ NON PUÒ ESSERE, IO e DRACULA NON POSSIAMO ESSERE DISTINTI DRACULA AVREBBE PAURA DI SE STESSO E DI ME E NON SOLO DI ME COME È INVECE IPOTIZZATO giuliana giovanni mario alberto marinella antonio DRACULA IO luca … giuseppe DRACULA IO Tutti hanno paura di Dracula Ma Dracula ha paura soltanto di me

17 Immaginate di avere tre scatole, in una ci sono due biglie nere, in unaltra due bianche, e nella terza una biglia nera e una bianca. Le scatole hanno unetichetta che indica il loro contenuto: NN, BB, BN. Qualcuno però ha mischiato le etichette, quindi il contenuto delle scatole non risponde più, in nessuno dei tre casi, a quanto indicato. Potete prendere una sola biglia alla volta da ogni scatola, senza guardarci dentro, e attraverso questo procedimento dovete stabilire il contenuto delle tre scatole. Qual è il minor numero di volte che dovrete pescare nelle scatole per stabilire quanto richiesto? LE ETICHETTE SCAMBIATE

18 INIZIALMENTE ABBIAMO LE SEGUENTI INFORMAZIONI N 2 qui le biglie possono essere BB o BN B N 3 qui le biglie possono essere NN o BB B 1 qui le biglie possono essere NN o BN ORA RAGIONIAMO Dato che le etichette non corrispondono al contenuto in nessun caso

19 NN o BN 1 BB o BN 2 NN o BB 3 UTILIZZIAMO LE INFORMAZIONI CHE ABBIAMO Se si pesca nella 1 o nella 2, non si ottiene, nel caso più sfortunato (cioè pesco una nera dalla 1 e una bianca dalla 2), alcuna nuova informazione. Se invece sono fortunata e pesco ad es. una B nella 1, allora posso concludere che nella scatola 1 ci sono una B e una N. Ma devo considerare il caso più sfortunato se voglio risolvere veramente il problema.

20 NN o BNBB o BNNN o BB 1 23 Se invece pesco, come prima e unica mossa, dalla 3, in ogni caso risolvo il problema: Da questa ulteriore informazione che acquisisco, viene determinato anche che cosa cè nelle altre due: se nella 3 cè BB allora nella 2 non può che esserci BN e nella 1 non può che esserci NN. se quella che pesco è bianca allora nella 3 si ha BB, se è nera allora nella 3 si ha NN Se nella 3 cè NN allora nella 1 cè BN e nella 2 cè BB.

21 Basta pescare una volta sola. E precisamente dalla scatola con scritto BN. Infatti se la biglia è bianca allora nella scatola devono esserci due biglie bianche. Nella scatola NN deve esserci una bianca e una nera Nella scatola BB devono esserci le due nere. Bisogna infatti tenere presente che nessuna etichetta corrisponde all esatto contenuto della scatola. SINTESI SOLUZIONE ETICHETTE SCAMBIATE

22 IL FURTO Si accertarono i seguenti fatti 1.Ognuno dei tre uomini A B C era stato nel negozio il giorno del furto, e nessun altro vi era stato quel giorno. 2.Se A era colpevole aveva avuto esattamente un complice. 3.Se B è innocente lo è anche C. 4.Se i colpevoli sono proprio due allora A è uno di essi. 5.Se C è innocente lo è anche B. Il signor Mc Gregor, negoziante di Londra, telefonò a Scotland Yard denunciando un furto nel suo negozio. Tre individui sospetti A, B e C furono fermati per essere interrogati. Chi viene incriminato dallispettore Craig?

23 Dalla 3 e dalla 5 si può dedurre che B e C o sono ambedue colpevoli o non lo sono nessuno dei due. Dalla 2 si deve dedurre che se A non ha avuto un complice, e uno solo, allora non è colpevole. Dalla 4 si deve dedurre che non possono esserci due colpevoli senza che A sia uno di essi. Si suppone inoltre che Mc Gregor non sia daccordo con nessuno dei tre e che gli estranei sospettabili possono essere solo A B C. SOLUZIONE DI IL FURTO

24 QUINDI B e C non possono essere ambedue colpevoli, perché se i colpevoli sono due A dovrebbe essere uno dei due. Non possono essere colpevoli tutti e tre perché A non può avere più di un complice, se è colpevole. Quindi B e C sono ambedue innocenti. A non può essere colpevole perché dovrebbe avere uno ed un solo complice, e il complice non può che essere o B o C. Dallispettore viene incriminato Mc Gregor il negoziante, aveva mentito per ricevere i soldi dellassicurazione.

25 Un esploratore si è ritrovato in una regione abitata da due tribù: i membri di una mentono sempre, i membri dellaltra dicono sempre la verità. Egli incontra due indigeni: Sei uno di quelli che dicono la verità? chiede a quello più alto. Guum risponde lindigeno. Volere dire sì risponde lindigeno più basso, che parla la lingua dellesploratore, ma lui stare grande bugiardo. A quale tribù appartiene ognuno dei due? CHI MENTE E CHI DICE IL VERO?

26 Prima cosa da notare è che lindigeno più alto non può che rispondere sì, a qualunque tribù appartenga (NB: supponiamo che lindigeno capisca la domanda anche se però non parla la lingua dellesploratore). Se è un bugiardo lindigeno più alto deve dire il falso, quindi alla domanda Sei uno di quelli che dicono la verità? deve rispondere sì, se è uno che dice la verità alla stessa domanda deve rispondere comunque sì. Lindigeno più basso ha detto la verità quindi sullindigeno più alto, e appartiene alla tribù di coloro che dicono il vero e quello più alto alla tribù dei bugiardi. (Si suppone che se dice la verità deve dire il vero in ogni singola affermazione, e se dice il falso deve essere falsa ogni singola affermazione.) SOLUZIONE CHI MENTE E CHI DICE IL VERO

27 Si potrebbe ragionare anche in un altro modo Lindigeno più basso potrebbe aver detto il falso perché, anche se è vero che il più alto ha detto sì, potrebbe essere falso che è un bugiardo e quindi la situazione si ribalterebbe. La frase ha detto sì ma lui stare grande bugiardo potrebbe essere considerata una frase falsa infatti anche se è falsa solamente la seconda delle due affermazioni. Quindi il più basso potrebbe aver detto il falso e il più alto la verità.

28 Unaltra possibile interpretazione Lindigeno alto non capisce che cosa gli dice lesploratore se non è in grado di rispondere sì in inglese, quindi il suo Guum significava qualcosa come non capisco. Di conseguenza lindigeno basso ha detto il falso quando ha affermato che il suo compagno alto aveva risposto sì. Lindigeno basso apparteneva quindi alla tribù dei bugiardi, e quello alto invece era uno che diceva la verità.

29 Tre uomini A B C vengono bendati e viene detto loro che su ognuno di essi verrà posto un cappello rosso o verde. Dopo che ciò viene fatto, la benda viene tolta; agli uomini viene chiesto di alzare una mano se vedono un cappello rosso e di uscire dalla stanza appena sono certi del colore del proprio cappello. Si dà il caso che tutti e tre i cappelli siano rossi e tutti e tre gli uomini alzino la mano. Passano diversi minuti sino a che C, che è più astuto degli altri, esce dalla stanza. Come ha fatto a dedurre il colore del suo cappello? UOMINI E CAPPELLI

30 Hanno tutti e due il cappello rosso e hanno alzato ambedue la mano A B C SOLUZIONE UOMINI E CAPPELLI

31 Hanno tutti e due il cappello rosso e hanno alzato ambedue la mano A C B

32 C A B

33 Infatti C ha ragionato così: se il mio cappello fosse verde, allora A e anche B avrebbero dovuto immediatamente capire il colore del loro cappello, perché sia B che A hanno visto almeno un cappello rosso ed essendo il mio verde il loro doveva essere rosso. Dopo un po C esce perché ha capito il colore del suo cappello Tutti e tre vedono che tutti e tre alzano la mano C A B

34 Hanno un cappello rosso e uno verde e hanno alzato tutti e due la mano RIVEDIAMO QUELLO CHE C PENSA: SE IL MIO CAPPELLO FOSSE VERDE … A B C

35 B Hanno un cappello rosso e uno verde e hanno alzato tutti e due la mano A C

36 Se il mio cappello fosse stato verde, sia A che B avrebbero dovuto immediatamente capire che il loro cappello non poteva che essere rosso, altrimenti non avremmo potuto tutti e tre alzare la mano affermando di avere visto almeno un cappello rosso C

37 Se non lhanno fatto è perché il mio cappello è rosso, e ci voleva una ulteriore riflessione per poter capire che in questo caso i cappelli non potevano che essere tutti e tre rossi. Io sono stato più veloce C

38 CHI E LINGEGNERE? Smith, Jones e Robinson sono lingegnere il frenatore e il fuochista di un treno, ma non sono elencati esattamente in questo ordine. Sul treno vi sono tre passeggeri con gli stessi tre nomi, identificati nelle premesse seguenti mediante un Sig. anteposto ai nomi.

39 I. Il Sig. Robinson vive a Los Angeles. II. Il frenatore vive ad Omaha. III. Il Sig. Jones ha da parecchio tempo dimenticata tutta lalgebra imparata nelle scuole superiori. IV. Il passeggero che ha lo stesso nome del frenatore vive a Chicago. V. Il frenatore ed uno dei passeggeri, un eminente fisico matematico, frequentano la stessa chiesa. VI. Smith batte il fuochista al biliardo VII. I tre passeggeri vivono in città diverse CHI E LINGEGNERE?

40 I. Il Sig. Robinson vive a Los Angeles. II. Il frenatore vive ad Omaha. III. Il Sig. Jones ha da parecchio tempo dimenticata tutta lalgebra imparata nelle scuole superiori. IV. Il passeggero che ha lo stesso nome del frenatore vive a Chicago. V. Il frenatore ed uno dei passeggeri, un eminente fisico matematico, frequentano la stessa chiesa. VI. Smith batte il fuochista al biliardo VII. I tre passeggeri vivono in città diverse CHI E LINGEGNERE?

41 Utilizziamo due tabelle per risolvere il problema ROBINSON SMITH JONES INGEGNEREFRENATOREFUOCHISTA LOS ANGELESOMAHA CHICAGO SIG. SMITH SIG. JONES SIG. ROBINSON In una cella va inserito 1 se la combinazione è ammessa dalle premesse, 0 in caso contrario

42 SMITH È LINGEGNERE ROBINSON SMITH JONES I N G E G N E R E FRENATOREFUOCHISTA LOS ANGELESOMAHACHICAGO SIG. SMITH SIG. JONES SIG. ROBINSON

43 ORA CALCOLIAMO E UTILIZZIAMO ANCHE E UTILIZZIAMO ANCHE PROPRIETÀ DI NUMERI E DI FIGURE E SEMPRE E SOPRATTUTTO LA LOGICA

44 LA BANDIERA DEL CIRCOLO (calcolo combinatorio) In quanti modi diversi si può colorare la bandiera facendo in modo che i due rettangoli dello stesso colore non abbiano lati in comune A B CD

45 SOLUZIONE LA BANDIERA: primo modo I rettangoli dello stesso colore devono essere o A e D, o B e C. Una volta scelta la diagonale, i rettangoli sullaltra diagonale devono essere di colore diverso. 3 modi diversi per colorare A e D, per ognuno di questi 3 modi ce ne sono altri due per colorare, con colori diversi B e C, e sono così 6 possibilità; ce ne sono poi altri 6 se si sceglie di colorare con colore uguale laltra diagonale B C. 12 MODI DIVERSI A B CD A D B C

46 SOLUZIONE LA BANDIERA: secondo modo Posso pensare di colorare tre caselle in modo diverso: per colorare la prima delle tre ho 3 modi diversi, per ognuno di questi ho due modi per colorare la seconda e infine un solo modo per colorare la terza (3! =3x2x1 modi diversi). Devo poi moltiplicare per 2 dato che posso colorare A B D in modo diverso e poi C con lo stesso colore di B, oppure A B C in modo diverso e poi D con lo stesso colore di A. I rettangoli dello stesso colore devono essere A e D, oppure B e C. A B C D A B C A B C D AB D 12 MODI DIVERSI

47 Un intervistatore bussa alla porta di una casa dove è atteso da una signora. La signora gli apre e lui chiede: "Quanti figli ha? "Ho tre figlie." gli risponde la donna. "Età? "Il prodotto delle età è 36 e la somma è uguale al numero civico di questa casa. "Buon giorno e grazie. L'intervistatore se ne va, ma dopo un po' ritorna e le dice: "I dati che mi ha fornito non sono sufficienti. La signora ci pensa un po' e replica: È vero, che sbadata! La figlia maggiore ha gli occhi azzurri. Con questo dato l'intervistatore può conoscere l'età delle tre figlie. Quanti anni hanno? L'ETÀ DELLE FIGLIE (soprattutto logica e scomposizione di un numero)

48 Possibili terne di etàprodottosomma Le figlie hanno rispettivamente 2, 2, 9 anni. Vediamo di capire perché. Noi non conosciamo il numero civico della casa, quindi dobbiamo trovare ed esaminare tutti i casi possibili. Visto che il prodotto è 36, le età potrebbero essere:

49 Se, ad esempio, il numero civico della casa fosse 14, non ci sarebbero problemi. L'unica terna di numeri interi che da come prodotto 36 e come somma 14 è 1, 4, 9. Come si vede dalla tabella, l'unica somma che dà origine ad ambiguità è 13, alla quale corrispondono due diverse terne, ciascuna delle quali prevede che due figlie sono gemelle. Ma la mamma ha precisato: "E' vero, che sbadata! La figlia maggiore ha gli occhi azzurri. Da ciò si capisce che la maggiore non ha una gemella, ma è unica. Quindi possiamo dedurre che le tre figlie hanno 2, 2 e 9 anni.

50 QUESTIONE DI AREE (proprietà di figure geometriche, aree e similitudini) Emma e Giulio capitarono in un palazzo da Mille e una notte … il pavimento era costituito da mattonelle tutte uguali fra loro, a forma di triangolo equilatero. La sala stessa era pure un triangolo equilatero e il lato della sala era lungo 50 volte il lato di una mattonella.

51 Chissà quante mattonelle ci sono volute per piastrellare questa sala, disse Giulio… e si mise a contarle. Ma Emma, più avveduta di lui, gli ribattè: Non ho voglia certo di stare qui fino a domani mattina a contare mattonelle. Piuttosto, cerchiamo di capire come funziona! e, estratto il notes che usava portare sempre con sé, buttò là questi schizzi:

52 Questione di aree

53 Invece delle tre pietre tombali ho tre carte: una interamente verde (le due facce numerate 1 e 2), una interamente rossa (3 e 4), una carta rossa da una parte e verde dallaltra (5 la rossa e 6 la verde). LE PIETRE DA CONTA (calcolo delle probabilità: pagg di S. Holmes e le trappole della logica, Scienza e Idee) Bisogna trovare qual è la probabilità che la tomba venuta alla luce, con segni che indicano che è regale dalla parte venuta alla luce, sia regale anche dallaltra parte, perché solo in questo caso potremmo avere dei vantaggi a scavare. Bisogna sapere se conviene tentare la fortuna. Supponiamo che il rosso indichi un regale e il verde un suddito.

54 SOLUZIONE LE PIETRE DA CONTA Sulle pietre tombali dei simboli indicavano i matrimoni tra regali, tra sudditi e tra sudditi e regali. La parte superiore della pietra aveva il simbolo del più vecchio della coppia, però non si era a conoscenza delletà dei sepolti. Si potrebbe pensare che ci sia il 50% di probabilità che laltra faccia della pietra sia di un regale o di un suddito, dato che la scelta è solo tra queste due possibilità. Ma ragioniamo come segue.

55 I numeri sulle carte servono solo a noi per capire meglio. Nel nostro caso dobbiamo escludere le carte 1 e 2, perché certamente la nostra tomba non è di due sudditi. 12 Pietra tombale di due coniugi sudditi 34 Pietra tombale di due coniugi regali 56 Pietra tombale di un matrimonio misto

56 Noi sappiamo che la parte venuta alla luce è regale, cioè rossa. È come se noi avessimo un urna con quattro biglie: 3 rosse e una verde. Abbiamo pescato una rossa. Qual è la probabilità che anche la seconda che pesco dallurna sia rossa? 34 Pietra tombale di due coniugi regali 56 Pietra tombale di un matrimonio misto Possiamo ragionare come segue

57 Essendo rimaste nellurna due biglie rosse e una verde, la probabilità di pescare una rossa è di 2/3 (~67%), e non di 1/2 (50%). È quindi conveniente scavare.

58 Possiamo ragionare anche come segue: consideriamo le varie coppie che possiamo avere Se quello venuto alla luce è il lato 4 allora il rovescio sarà il 3 rosso. 456 Se quello venuto alla luce è il lato 3 allora il rovescio sarà il 4 rosso. Se quello venuto alla luce è il lato 5 allora il rovescio sarà il 6 verde. Quindi la probabilità che la pietra che fuoriesce dalla collina sia interamente regale non è di 1/2 ma di 2/3. 334

59 MAGIA CON LE MATRICI sembra una tabella con numeri messi a caso, invece possiede proprietà che si potrebbero definire magiche!!!

60 Scegli un numero della tabella a caso, per esempio 22 2.Elimina tutti gli altri numeri della stessa riga e colonna 3.Continua allo stesso modo per quattro volte, ad esempio scegli, tra i numeri scoperti, 10, 2, Dopo aver eliminato tutte le righe e colonne corrispondenti ai numeri scelti a caso, ti resta ancora il 12. La somma dei numeri rimasti, per qualunque scelta dei numeri, è sempre la stessa, 57, e chi propone il gioco la conosce a priori. COME SI GIOCA?

61 La matrice magica può essere generata come somma dei numeri delle celle rosa. Con il procedimento precedente ci assicuriamo un solo numero per ogni riga e colonna. Ognuno di quei numeri è la somma dei due corrispondenti nelle celle rosa. Quindi la somma dei numeri rimasti sarà proprio la somma dei numeri delle celle rosa che avevano generato la matrice. La stessa matrice può essere generata da insiemi diversi di numeri di qualunque tipo. SOLUZIONE MAGIA CON LE MATRICI

62 LA STESSA MATRICE GENERATA DA ALTRI NUMERI

63 SATOR AREPO TENET OPERA ROTAS UNA CURIOSITÀ: UN QUADRATO PALINDROMO E MUSICALE Il compositore viennese Alban Berg, degli anni del Novecento, lo utilizzava per le sue composizioni.

64 UN ARTISTA STRAVAGANTE artifizi e sorprese con i numeri lato = 1 l = 1/2 l = 1/3 Area =1 A=1/4 A=1/9 Un artista decide di costruire una piramide nel modo indicato in figura: il lato inizialmente è lungo 1, e poi 1/2, 1/3, 1/4 e via di seguito. Il laboratorio in cui la piramide viene costruita ha un soffitto alto 3m. 1. Quanti cubi posso mettere uno sopra laltro? 2. Lartista dispone di un quantitativo di vernice dorata sufficiente per dipingere 3m 2. Basterà per dipingere una sola delle facce dei vari cubi sovrapposti?

65 Il calcolo che deve fare lartista per laltezza della piramide è il seguente: Che possiamo scrivere nel seguente modo:

66 Si vede con chiarezza che 16 cubi superano laltezza di 3m. Se il numero dei cubi cresce allinfinito (n = 2 k cubi) anche laltezza della piramide cresce allinfinito. Infatti se esprimiamo il numero dei cubi mediante una potenza di 2, con k-esponente numero naturale, otteniamo che laltezza si può esprimere nel modo seguente: Se cresce n, e quindi cresce 2 k, cresce anche lesponente k

67 = 32 … n = 2 k k n = numero dei cubi

68 La superficie da dipingere sarà: Che si può scrivere come segue: Ma i termini delladdizione si possono scrivere così

69 Quindi, a differenza dellaltezza, la superficie si mantiene sempre più piccola di 2 m 2, la vernice è più che sufficiente quindi, ma dovrà fare attenzione al soffitto... Se la piramide ha 5 cubi uno su laltro, il calcolo è il seguente Se la piramide ha n cubi uno su laltro, il calcolo è il seguente

70 INGANNI MATEMATICI

71 Il paradosso di Hilbert del celeste locandiere e lincredibile miracolo dellastuto oste terreno Il direttore di un albergo celeste dotato di un numero infinito di stanze, tutte occupate, vuole sistemare un nuovo cliente. Egli vi riesce spostando ogni occupante di una stanza in quella di numero immediatamente successivo, lasciando libera così la stanza numero 1. Cosa può fare se arriva un numero infinito di nuovi ospiti? Limpassibile direttore sposta semplicemente ogni occupante di una stanza in quella avente il numero doppio corrispondente: IL PARADOSSO DI HILBERT

72 Ma è realmente necessario che il numero delle stanze occupate sia infinito per poter sistemare i nuovi clienti? La canzoncina che segue, tratta da una rivista inglese della fine del secolo XIX, racconta come un abile locandiere che disponeva di 9 stanze libere non ebbe difficoltà a provvedere di alloggi singoli ognuno dei 10 viaggiatori. il cliente della stanza 1 va nella 2, quello della stanza 2 va nella 4, quello della stanza 3 va nella 6 e così via. Questo rende libere tutte le stanze di numero dispari, in cui tutti i nuovi clienti potranno trovare posto. IL MIRACOLO DELLOSTE TERRENO

73 Dieci stanchi viaggiatori piè piagati ed ossa rotte, eran giunti a una locanda Che già cupa era la notte. -Nove stanze, non di più – -disse loste, - posso offrire. -solo in otto il letto è singolo, Laltra a due dovrà servire - Qui successe un parapiglia, una cosa da ammattire, ché nessun di quei signori in due insiem volea dormire. Loste in dubbio, era un furbone, alla svelta si sbrigò e per far piacere agli ospiti ecco cosa ti pensò.

74 Due di quelli mise in A ed il terzo alloggiò in B; assegnato il quarto in C, ritirossi il quinto in D. In E il sesto e in F poi anche un altro sistemò; in G e in H ottavo e nono. Indi ad A se ne tornò, dove aveva, come dissi, due clienti a sistemare e uno di essi, il dieci, infine in I fece traslocare. Nove stanze a letto singolo fece a dieci allor bastare ed è questo che me e molti ancor fa meravigliare.

75 Qualsiasi numero a può essere uguale ad un numero minore b, trova lerrore.

76 Lerrore sta nella divisione per 0, che si fa dal passaggio 5) al passaggio 6). Dato che a = b+c si ha che a-b-c = 0. ESEMPIO: a=7 e b=5 e c=2. In 6) si ottiene 7*0=5*0 che è unuguaglianza vera, ma se divido per 0 ottengo 7 = 5 che è falsa. Se c è un numero positivo allora a>b, es: 7=5+2 Se a>b non può essere a=b

77 La manipolazione del numero immaginario i (i 2 =-1) presenta molti trabocchetti

78 nel passaggio da 2) a 3) cè lerrore. Infatti:

79 Giochi tratti da soluzioni personalmente rielaborate ENIGMI E GIOCHI MATEMATICI Martin Gardner, Rizzoli QUAL È IL TITOLO DI QUESTO LIBRO? Raymond Smullyan, Zanichelli LA MATEMATICA NELLA REALTÀ Castelnuovo / Gori Giorgi / Valenti, La Nuova Italia DA VARI SITI INTERNET SHERLOCK HOLMES E LE TRAPPOLE DELLA LOGICA Colin Bruce, Scienza e Idee


Scaricare ppt "LEZIONE DEL 16 NOVEMBRE 2006 EUREKA! GIOCANDO. METTI ALLA PROVA LE TUE CAPACITÀ DI RAZIOCINIO."

Presentazioni simili


Annunci Google