La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

La Scala delle distanze Ovvero: come arrivare lontano.

Presentazioni simili


Presentazione sul tema: "La Scala delle distanze Ovvero: come arrivare lontano."— Transcript della presentazione:

1 La Scala delle distanze Ovvero: come arrivare lontano

2 La Legge di Hubble Questo è il primo diagramma fatto da Hubble nel 1929 esso comprende galassie con redshift fino a 1100 km/sec e implica una costante di Hubble di ~ 500 km/sec/Mpc

3 Legge di Hubble pendenza = 75 km/s/Mpc detta Costante di Hubble

4 La Legge di Hubble Valori di H 0 pubblicati dal 1927 al 1980

5 La strada per arrivare lontano

6 Le distanze dalle stelle vicine si misurano con la parallasse

7 La Legge di Hubble Hubble trovò che la distanza D di una galassia era proporzionale allo spostamento verso il rosso delle righe spettrali cioè Dove V è la velocità radiale della galassia (redshift) in km/sec Tempo di Hubble

8 Le distanze dalle stelle vicine si misurano con la parallasse Distanza in parsec = 1/(angolo di parallasse in secondi darco) d(pc)= 1/p 1 parsec=distanza da cui il semiasse maggiore terrestre è visto sotto un angolo di 1 1 parsec= UA=3.086 x km/sec=3.26 anni luce Parallassi trigonometriche Parallassi secolari Parallassi statistiche Moto degli ammassi

9 MALMQUIST EFFECT Ogni campione di oggetti è più e più ristretto ai membri più brillanti allaumentare della distanza Per es: Un campione di galassie lontane avrà una luminosità media più alta di un campione vicino Quindi la scelta impropria di un campione introduce incompletezza come pure lambiente del campione e il binning Una distanza errata di un fattore 2 ==> luminosità un errore di un fattore 4

10 Metodo di Baade-Wesselink La luminosità intrinseca di una stella e data dalla seguente relazione Dove R è il raggio della stella, T eff è la temperatura effettiva e è la costante di Stefan-Boltzmann da qui quindi si ha la magnitudine assoluta Nota la magnitudine apparente si ha la distanza

11 VLT

12 Frange di interferenza

13 Luminosità di stelle variabili Le due più importanti classi di stelle pulsanti per la misura della distanza sono le variabili Cefeidi e le stelle RR Lyrae. Cefeidi classiche --> stelle giovani --> popolazione di disco -- >si trovano in galassie spirali Osservazioni periodiche --> scoperta delle variabili stima delle magnitudini --> determinazione del periodo Stima magnitudini standard --> correzione per assorbimento stima della distanza

14 Luminosità di stelle variabili Relazione periodo Luminosità:

15 Luminosità di stelle variabili Le Cefeidi hanno magnitudini assolute M v ~-3 e possono quindi essere studiate fino a moduli di distanza m-M~25 da Terra e m-M~28 con HST. Le RR Lyrae sono significativamente più deboli avendo magnitudini assolute M v ~0.6. Quindi si possono studiare solo fino a moduli di distanza m-M~22 da Terra o m-M~25 con HST. Le Cefeidi si possono studiare fino allammasso della Vergine mentre è impossibile trovare RR Lyrae al di là del Gruppo Locale.

16 Luminosità di stelle variabili Le Cefeidi sono stelle giganti o supergiganti di tipo G o F il periodo di pulsazione varia da 2 a 60 gg e la magnitudine può variare anche di 0.5 mag Le RR Lyrae hanno periodi più corti e si trovano negli ammassi globulari

17 Luminosità di stelle variabili Processi fisici della pulsazione: Nelle cefeidi la zona di ionizzazione dell He è responsabile della pulsazione La relazione P-L è dovuta al fatto che T nella strip di instabilità è piccola: dalla gravitazione Newtoniana abbiamo: Eliminando la massa come variabile il periodo dipende solo dalla luminosità e dalla temperatura

18 Cefeidi extragalattiche

19 Dove si arriva? Le Cefeidi più vicine sono a circa 200pc quindi:non ci sono parallassi trigonometriche. Ci si avvale di quelle statistiche. Le Cefeidi in ammassi hanno periodi corti; < 12gg Le Cefeidi in associazioni hanno periodi lunghi tra 15 e 70gg Nelle galassie più lontane si vedono solo Cefeidi con periodo più lungo. (Effetto Malmquist)

20 La strada per arrivare lontano

21 Le incertezze sulla distanza LMC 141 Cefeidi note errore 0.13mag 7% in distanza M33 10 Cefeidi note errore 0.16mag 8% in distanza NGC Cefeidi note errore 0.24mag 12% in distanza Una incertezza nella distanza per una galassia a 7.5 Mpc è solo 2 volte quello per LMC si è quindi sicuri di avere un 15% di incertezza sicura

22

23 La strada per arrivare lontano

24 Indicatori di Distanza Indicatori Primari: Indicatori Secondari: Cefeidi RR Lyrae Supernovae Ammassi globulari Novae Tutto il resto

25 La funzione di luminosità degli ammassi globulari Gli ammassi globulari hanno luminosità medie che sono circa le stesse per ogni galassia: M v E giganti hanno ~ centinaia di ammassi globulari, il più brillante può essere M v -11 Ci sono però grandi differenze statistiche nelle luminosità degli ammassi più brillanti

26 47 Tucanae M22

27 M87 Galassia Ellittica Nellammasso della Vergine

28

29 Galassia Sombrero M104

30 La funzione di luminosità degli ammassi globulari Si è allora passati alla funzione di luminosità dellintero insieme di ammassi globulari che ha una struttura più identificabile. (m) = N° di GC in funzione di m Dove: m 0 = turnover point dove cè il massimo (m) = dispersione della distribuzione A è un fattore di normalizzazione che da una stima del numero totale di ammassi nella galassia

31 La funzione di luminosità degli ammassi globulari

32 Devo cercare di determinare m 0 Come si procede? Sottrarre la luce della galassia e quello che rimane sono gli ammassi globulari. Se non si raggiunge il massimo è difficile determinare m 0 e (m).

33 La funzione di luminosità degli ammassi globulari a) Si lavora bene con le ellittiche giganti dove N> 1000 ed è difficilissimo nelle spirali b)Non essendo variabili basta una sola osservazione c) Non cè arrossamento interno essendo oggetti di halo di grandi galassie d) La distanza massima che si può raggiungere è D=50 Mpc

34 La funzione di luminosità degli ammassi globulari Ipotesi Formazione iniziale degli ammassi globulari uguale per tutte le galassie Stesso spettro di massa Stessa funzione di luminosità La calibrazione consiste nellavere M 0 per il maggior numero possibile di galassie

35 La funzione di luminosità degli ammassi globulari (M 0, ) devono comportarsi con regolarità lungo la sequenza di Hubble Per le E giganti = mag Per il gruppo locale = mag Per la Via Lattea M 0 = In M31 può essere più debole di 0.2 mag

36 La funzione di luminosità degli ammassi globulari Il punto zero dipende comunque dalle RR Lyrae Errore interno delle misure stesse: 0.2 mag per e ; 0.2 mag per M 0, 0.05 mag nel punto zero fotometrico e 0.05 mag per assorbimento A B Errori esterni: Incertezza nella scala delle luminosità delle RR Lyrae Differenze sistematiche per M 0 in galassie dei vari tipi

37 La funzione di luminosità degli ammassi globulari Differenze di metallicità Errori sistematici nel fit della funzione ai dati sperimentali Incertezza finale 0.4 mag LIMITI Il maggior limite è che si può applicare alle galassie ellittiche giganti, bisogna calibrare per grandi galassie a disco

38 La funzione di luminosità degli ammassi globulari Si potrebbe anche usare la parte brillante della funzione di luminosità (m), poiché cade molto rapidamente. Nella parte più brillante M v -10 si ha quindi: M v (n) 0.4 M v dove M v (n) è la luminosità media degli ammassi più brillanti (n 10-20), questo valore può essere una candela standard con una precisione di 0.5mag Per le ellittiche giganti si può arrivare fino a V r km/sec

39 La strada per arrivare lontano

40 Cosa è una Nova? Una nova è una esplosione di relativamente modesta di H sulla superficie di una nana bianca in un sistema binario. Accade quando la nana bianca sottrae massa dal suo compagno e il suo mezzo esterno si accende rapidamente e diviene più brillante. Tale processo non danneggia la nana bianca e si può ripetere.

41 NOVAE Le Novae sono luminose e facili da riconoscere. Sono stelle di popolazione II ==> E/S0 e bulges di S quindi meno assorbimento e piu semplice che per le Cefeidi che invece sono prevalentemente nel disco. Il punto di partenza per la misura della distanza è la relazione tra la magnitudine al massimo e il rate di diminuzione di questa stessa magnitudine


Scaricare ppt "La Scala delle distanze Ovvero: come arrivare lontano."

Presentazioni simili


Annunci Google