La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

1 Modelli dilluminazione locale radiometrici Maurizio Rossi, Daniele Marini, Davide Selmo.

Presentazioni simili


Presentazione sul tema: "1 Modelli dilluminazione locale radiometrici Maurizio Rossi, Daniele Marini, Davide Selmo."— Transcript della presentazione:

1

2 1 Modelli dilluminazione locale radiometrici Maurizio Rossi, Daniele Marini, Davide Selmo

3 2 Limiti dei modelli di illuminazione locale I modelli Flat, Gourad, Phong sono stati formulati empiricamente Una soluzione corretta del problema della interazione tra luce e materia, richiederebbe la soluzione delle equazioni di Maxwell per il campo elettromagnetico Tale approccio non è praticabile in forma analitica o numerica a causa della elevata complessità

4 3 Equazioni di Maxwell Dove c è la velocità della luce, da cui la 4° eq: E è il campo elettrico, B il campo magnetico ρ la densità di carica e il vettore densità di corrente. Le costanti ε 0 e μ 0 sono dette rispettivamente costante dielettrica del vuoto e permeabilità magnetica del vuoto, e sono legate dalla relazione: Vedi:

5 4 Indice di rifrazione A partire dalle equazioni di Maxwell, sfruttando il fatto che il campo elettrostatico è conservativo, è possibile dimostrare che passando da un mezzo ad un altro la componente del campo elettrico tangente all'interfaccia è continua. Se i due mezzi hanno un diverso indice di rifrazione (che chiameremo n 1 e n 2 ) la velocità della radiazione deve cambiare da c/ n 1 a c/ n 2. La condizione di continuità implica: ovvero Questa relazione è nota come legge di Snell.

6 5 Indice di rifrazione n È funzione della lunghezza donda n( ) Nei conduttori è una funzione complessa: n( ) = n( ) + i k( ) k( ) è il coefficiente di estinzione Nei dielettrici è una funzione reale: n( ) = n( ) k( ) è nullo

7 6 Riflettometria La riflettometria descrive la riflessione delle onde e.m. su materiali reali in termini di grandezze radiometriche Le funzioni di Fresnel forniscono una soluzione al problema della riflessione delle onde e.m. in alcuni casi semplificati (riflessione speculare su un materiale liscio ideale) Anche lutilizzo diretto delle funzioni di Fresnel complete non è praticabile a causa della loro elevata complessità

8 7 Funzioni di Fresnel per dielettrico Indica il rapporto tra l'intensità della radiazione incidente e quella della radiazione trasmessa all'interno del materiale È funzione della lunghezza donda (cromaticità) Radiazione polarizzata trasmessa da un dielettrico, dipende dallangolo di incidenza e di trasmissione:

9 8 Funzione di Fresnel per dielettrico Lintensità della radiazione trasmessa dipende sia dalla direzione della radiazione incidente sia dalla direzione della radiazione trasmessa; Le due direzioni sono complanari con la normale alla superficie

10 9 Funzione di Fresnel per conduttore n 2 è l'indice di rifrazione del mezzo conduttore (quello dell'aria è pari a 1) e k 2 è il coefficiente di estinzione del conduttore Lintensità della luce trasmessa nel conduttore dipende solo dalla direzione della luce incidente:

11 10 Funzioni di Fresnel Le funzioni di Fresnel in un conduttore

12 11 Interazione luce materia Modello superficiale a microfacce Conduttori vs dielettrici

13 12 Riflessione: BRDF La funzione di distribuzione della Riflettanza Bidirezionale (Bidirectional Reflectance Distribution Function) descrive la riflessione delle onde e.m.: 1.Su una superficie reale caratterizzata da una qualsiasi microrugosità superficiale 2.Rispetto a qualsiasi direzione (ovvero speculare e/o diffusa) 3.In funzione della radianza riflessa L r e della irradianza incidente E i 4.In funzione della lunghezza donda

14 13BRDF

15 14 BRDF Anisotropa Non cè simmetria rispetto alla normale La superficie presenta una geometria fortemente orientata Esempio: velluto, pelliccia, capelli Isotropic and Anisotropic Aluminum, Westin, Arvo, Torrance

16 15 Esempi Un tessuto avvolto su un cilindro. sinistra: satin, destra: velluto. destra: lo stesso tessuto dopo una rotazione di 90°. La luce viene dallalto e di fronte (notare lassenza di ombra sul tavolo). Le condizioni di illminazione sono identiche in tutte le immagini

17 16 BRDF Purtroppo: 1.La BRDF non è nota analiticamente 2.È definita sperimentalmente e può essere misurata con estrema difficoltà dato che dipende da cinque variabili 3.In caso di superfici non omogenee (texture) la sua misurazione dovrebbe essere ripetuta su ogni punto campione della superficie I modelli di illuminazione locali Gourad e Phong sono stati formulati empiricamente per cercare di approssimare la BRDF

18 17 Dimensionalità della BRDF Funzione di –Posizione (3) –Direzioni di incidenza e riflessione (4) –Lunghezza donda (1) Semplificazioni: A volte non si considera la lunghezza donda Si assume il matriale uniforme Si assume il materiale isotropo i r d

19 18 Come otteniamo le BRDF? Sperimentalmente –goniospettrofotometro Con modelli analitici –Basati sulla fisica –Modelli empirici Strategia più utilizzata Greg Ward

20 19 Misurare la BRDF

21 20 Test rendering: rendering di un tessuto di seta, di cotone e di lana Confronto tra una fotografia dellagente Smith (sinistra) e di una iimagine di sintesi completa (destra) BRDF: applicazione

22 21 Modelli di BRDF Fisici –Cook-Torrance[81] –He et al.[91] Empirici –Phong[75] Phong-Blinn[77] –....

23 22 Modello di Cook-Torrance Si suppone che la superficie sia composta da piccoli elementi planari detti microfacce Solo le microfacce che hanno la normale in direzione H contribuiscono alla riflessione tra V e V n l

24 23 Modello di Cook-Torrance La BDRF dipende da 5 differenti angoli ed è espressa come combinazione lineare di un riflettore diffusivo e uno speculare d è la componente diffusiva, s quella speculare, d + s =1 D () 0 definisce la frazione delle microfacce che sono orientate in direzione H

25 24 Modello di Cook-Torrance F () [0,1] è la funzione di Fresnel, definisce il colore della componente speculare G [0,1] è il fattore geometrico che definisce la percentuale di luce che non è mascherata dalla superficie

26 25 D si può anche considerare come funzione di rugosità, indica sempre la percentuale di microfacce orientate come H. Un possibile modello per D: Modello di Cook-Torrance con angolo tra V e H, c costante arbitraria, m indice di rugosit à normalizzato, quando è prossimo a 0 la superficie è liscia, se è prossimo a 1 allora è molto scabra

27 26 G parametro geometrico tiene conto dell'orientamento delle microfacce superficiali, che possono proiettare un'ombra su facce vicine (shadowing) o produrre una riflessione speculare verso la direzione di osservazione o infine la luce riflessa può essere parzialmente bloccata da altre faccette (masking).

28 27

29 28 Modello di Cook-Torrance Limiti: –Arbitrarietà dei parametri d, s e m che devono essere determinati dalloperatore in base allesperienza sullaspetto dei materiali –Ignorata la diffusione della luce sotto la superficie del materiale (sub-surface scattering)

30 29 Modello di Cook-Torrance, riassumendo La BRDF è quindi approssimata con: d coefficiente di riflessione diffusa 0 d 1 s coefficiente di riflessione speculare 0 s 1 Ovviamente d + s 1 se il materiale è un dielettrico puro d=1 e s=0 se il materiale è un conduttore puro d=0 e s=1 d riflessione diffusa (lambertiana) s riflessione speculare non ideale, ovvero perturbata dalle microrugosità superficiali della materia, dipende da: 1.Angoli di incidenza e riflessione della luce 2.Fattore di microrugosità m che descrive statisticamente la superficie (maggiore m … maggiore la microrugosità) 3.Indice di rifrazione n( ) che è funzione della lunghezza donda e quindi determina lo spettro della radiazione riflessa, ovvero il colore del materiale

31 30 Modello locale di He-Torrance 1991 Questo modello (1991) cerca di eliminare i limiti del modello di Cook-Torrance scomponendo la BRDF in tre componenti senza coefficienti arbitrari: 1.Speculare: dovuta ai raggi che riflettono una sola volta sulla superficie 2.Diffusa direzionale: dovuta ai raggi che riflettono una sola volta sulla superficie ma sono deviati dalla direzione speculare ideale a causa delle microrugosità 3.Diffusa uniforme: dovuta ai raggi che riflettono più volte sopra (conduttori e dielettrici) e sotto (solo nei dielettrici) la superficie del materiale

32 31 Limiti dei modelli di illuminazione locale Limiti dei modelli descritti. Questi ignorano: 1.Fluorescenza dei materiali 2.Fosforescenza dei materiali 3.Anisotropia dei materiali 4.Polarizzazione della luce 5.Sub-surface scattering di alcuni materiali dielettrici (marmo, pelle umana,……)

33 32 Modelli di illuminazione locale Regole generali per la scelta dei parametri

34 33 BSSRDF La BRDF non considera il cammino della luce negli strati sotto-superficiali dei materiali (sub- surface scattering)

35 34 BSSRDF La BSSRDF dipende dalle direzioni di incidenza (x i,y i ) e riflessione (x r,y r ) della radiazione i è il flusso radiante incidente in (x i,y i )

36 35 Modelli locali che simulano la BSSRDF Hanrahan (1993): materiali a strati con BDRF e BTRF Wolff (1994): modellato in 3 passi: rifrazione entrante, diffusione interna, rifrazione uscente Pharr (2000): BSSRDF ottenuta tramite funzioni integrali

37 36 BSSRDF Modello di Jensen (2001) –La BSSDRF viene approssimata con una BDRF (supponendo illuminazione uniforme) –Somma di due termini: riflettanza diffusa, scalata con Fresnel + termine di scattering (1)

38 37 BRDFBSSRDF


Scaricare ppt "1 Modelli dilluminazione locale radiometrici Maurizio Rossi, Daniele Marini, Davide Selmo."

Presentazioni simili


Annunci Google