La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

La matematica prima dei numeri Come prevenire ed individuare le difficoltà di elaborazione numerica in età prescolare e nei primi anni della scuola primaria.

Presentazioni simili


Presentazione sul tema: "La matematica prima dei numeri Come prevenire ed individuare le difficoltà di elaborazione numerica in età prescolare e nei primi anni della scuola primaria."— Transcript della presentazione:

1 La matematica prima dei numeri Come prevenire ed individuare le difficoltà di elaborazione numerica in età prescolare e nei primi anni della scuola primaria Seconda Lezione - Modulo per la Scuola Primaria Laura Barbirato psicologa dellapprendimento 1laura barbirato 2013

2 Difficoltà e disturbi di apprendimento: si rendono evidenti con lingresso a scuola MA.. NEL PERIODO PRESCOLASTICO i bambini strutturano quei concetti logico-spaziali-temporali e linguistici indispensabili agli apprendimenti scolastici successivi 2laura barbirato 2013

3 Secondo i modelli neuropsicologici più recenti… alla base di tutte le abilità matematiche ci sono processi inizialmente analogici più che logici basati sulle immagini mentali delle quantità. Sulla base di queste immagini mentali si costruiscono le prime idee di quantità e le prime strategie di conta e di operazione. Tutto ciò che a livello simbolico avviene dopo, non misconosce mai queste modalità primarie di processamento pre-numerico. 3laura barbirato 2013

4 Occorre: Conoscere il modo spontaneo di procedere del bambino, assecondarlo e potenziarlo Perché ? va a costituire limpalcatura concettuale successiva Quando? Nel periodo prescolastico e nelle prime fasi della scolarizzazione (più avanti lintervento preventivo non è più così efficace e si applicano piuttosto strumenti compensativi e misure dispensative) 4laura barbirato 2013

5 Le attività di prevenzione e potenziamento Sono utili per gli alunni che sono a rischio di disturbo discalculico Sono efficaci e utili per tutti gli alunni che potrebbero presentare le più frequenti DIFFICOLTA di apprendimento in matematica 5laura barbirato 2013

6 LA NEUROPSICOLOGIA DIMOSTRA CHE ALCUNE FACOLTA NUMERICHE SONO PRESENTI MOLTO PRIMA DI QUANTO RITENEVA PIAGET Fin da piccolissimo infatti, il bambino si dimostra capace di memorizzare la numerosità, apprezzarne i cambiamenti e luguaglianza, senza possedere tutti i prerequisiti piagetiani, a patto che le quantità siano piccole Vedi esperimenti di Antell e Keating e di Karen Wynn 6laura barbirato 2013

7 il modulo numerico innato di Butterworth consente di: Riconoscere la numerosità a vista (effetto subitizing) Distinguere i cambiamenti di numerosità Ordinare i numeri in base alle dimensioni Processare automaticamente le piccole quantità. la capacità di apprezzare la numerosità senza dover contare è alla base di tutte le successive abilità di calcolo e di processamento numerico 7laura barbirato 2013

8 LEFFETTO SUBITIZING (innato) opera ENTRO il cinque Oltre il 5 la natura ci viene in aiuto: le dita delle mani sono raggruppate in cinquine ed estendono al dieci la capacità di vedere i numeri senza contarli. la stimolazione del riconoscimento veloce e a vista delle piccole quantità con oggetti entro il 4 e oltre utilizzando le dita delle mani è efficace per prevenire e potenziare lintelligenza numerica fin da quando il bambino è molto piccolo. 8laura barbirato 2013

9 Dallinnato al culturalmente appreso: la conta Contare è la prima operazione matematica che costituisce un ponte tra le abilità numeriche innate e le conoscenze culturali Imparare a contare non è così semplice come potrebbe sembrare; richiede lo sviluppo di competenze di quantificazione (e lessico dei numeri), corrispondenza biunivoca, cardinalità … Inoltre: astrazione e irrilevanza dellordine 9laura barbirato 2013

10 Quindi, allingresso a scuola Accertarsi che il bambino sappia contare (applichi correttamente la strategia della conta) Insegnargli a contare se non ne è capace! (filastrocca dei numeri, corrispondenza biunivoca – non saltare nessun oggetto nella conta e non contare due volte lo stesso oggetto- cardinalità: ultimo numero pronunciato corrisponde alla quantità contata) A partire dalla conta il bambino intuisce laddizione 10laura barbirato 2013

11 Addizione: fasi dellacquisizione spontanea Contare tutto: per fare il bambino conta prima Uno, due, tre, poi uno, due, tre, quattro, cinque, infine tutto insieme. Contare in avanti a partire dal primo addendo: il bambino scopre che non deve contare uno a uno il primo addendo, ma può partire da tre e andare avanti per altri cinque elementi e arriva così più velocemente al risultato Contare in avanti a partire dalladdendo più grande: il bambino sceglie di partire dal numero più grande, il cinque, e va avanti di tre: sei, sette, otto Questa strategia è economica e libera il carico della memoria! Se il bambino non ci arriva, gli va insegnata! 11laura barbirato 2013

12 Solo quando il meccanismo di conta si è stabilizzato il bambino è pronto alla cognizione aritmetica. 12laura barbirato 2013

13 MODELLI NEUROPSICOLOGICI DEI FATTI MATEMATICI 1. Il modello di McCloskey (2 sistemi distinti, sistema numerico e sistema del calcolo) 2. Il modello di Dehaene o del triplice codice 3. Il modulo numerico innato di Butterworh 13laura barbirato 2013

14 Modello di McCLOSKEY ( ) CONOSCENZA NUMERICA: SISTEMA DEI NUMERI SISTEMA DEL CALCOLO 3 SISTEMI DI RAPPRESENTAZIONE DEI NUMERI, POSSIBILI PROBLEMI DI TRANSCODIFICA 14laura barbirato 2013

15 MODELLO DI MC CLOSKEY sistema di comprensione dei numeri sistema di produzione dei numeri input output magazzino dei fatti aritmetici procedure di calcolo sistema del calco lo elaborazione dei segni delle operazioni sistema del numero Rappresentazione semantica (simbolica) 15

16 Non si spiegano alcuni processi... Quantificazione/stima/approssimazione Effetto distanza nei giudizi di numerosità Questi processi sembrano sostenuti più da immagini mentali che da processi logici! 16laura barbirato 2013

17 Ma si identificano forme diverse di discalculia Dislessia per le cifre 34=sessantasei 1 = nove 323= duecentoventidue Discalculia per i fatti aritmetici (errori nel recupero automatico, di confine 6x3=21, di slittamento 4x3=11) Discalculia procedurale (incolonnamento, errori di riporto e prestito…) 17laura barbirato 2013

18 Modello di Dehaene (1992) o del triplice codice Esiste una rappresentazione mentale analogica (iconica, non simbolica) su cui si fondano le rappresentazioni simboliche (etichette lessicali e simboli arabici) Si fondano su queste immagini mentali leffetto subitizing, la stima, leffetto distanza 18laura barbirato 2013

19 MODELLO DI DEHAENE codice analogico (grandezza) confronto calcolo approssimato codice arabo codice verbale operazioni su operandi di più cifre conteggio tabelle di addizione e moltiplicazione input scritto/ orale output scritto/ orale scrittura di un numero arabo lettura di un numero arabo 19laura barbirato 2013

20 Le immagini mentali delle quantità Sono il fondamento del calcolo mentale prima, scritto poi. Tutto il calcolo scritto non smentisce mai il calcolo mentale intuitivo, semplicemente è una protesi del primo. Tutti i calcoli fondamentali sono contenuti entro il 10, massimo laura barbirato 2013

21 Modello di Butterworth ( ) Parla di modulo numerico innato e sostiene che nei discalculici questo modulo è deficitario. Di conseguenza è carente: Riconoscimento della numerosità Distinzione dei cambiamenti di numerosità Ordinamento dei numeri secondo le dimensioni Processamento automatico delle piccole numerosità 21laura barbirato 2013

22 STIMOLARE PRECOCEMENTE LINTELLIGENZA NUMERICA Potenziare precocemente la rappresentazione analogica delle quantità e delle operazioni Potenziare lo sviluppo naturale con strategie educative pertinenti fin dalla nascita a partire dal calcolo mentale e di per sé ha poco a che fare con le procedure degli algoritmi scritti laura barbirato

23 Processi basilari su cui lavorare inizialmente senza ricorrere al numero Potenziare il processo del SUBITIZING Riprodurre velocemente le quantità CON LE DITA DELLE MANI Allenare la STIMA DELLE QUANTITA UGUALE/DIVERSO oppure PIU- MENO-UGUALE con piccole quantità Memorizzare la FILASTROCCA DEI NUMERI NEL GIUSTO ORDINE Allenare le OPERAZIONI DI CONTA Allenare il RICONOSCIMENTO DELLE QUANTITA SULLE DITA DELLE DUE MANI EFFETTUARE LE PRIME OPERAZIONI DI ADDIZIONE con la giusta strategia Sollecitare la STIMA DELLORDINE DI GRANDEZZA con piccole quantità In un momento successivo: applicare le cinque strategie del potenziamento del calcolo mentale (che approfondiremo in seguito) laura barbirato

24 Arrivederci! 24laura barbirato 2013


Scaricare ppt "La matematica prima dei numeri Come prevenire ed individuare le difficoltà di elaborazione numerica in età prescolare e nei primi anni della scuola primaria."

Presentazioni simili


Annunci Google