La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Elementi di calcolo delle probabilità. La parte della matematica che studia gli avvenimenti legati al caso, al fine di stabilire quale possibilità di.

Presentazioni simili


Presentazione sul tema: "Elementi di calcolo delle probabilità. La parte della matematica che studia gli avvenimenti legati al caso, al fine di stabilire quale possibilità di."— Transcript della presentazione:

1 Elementi di calcolo delle probabilità

2 La parte della matematica che studia gli avvenimenti legati al caso, al fine di stabilire quale possibilità di verificarsi hanno tali avvenimenti, prende il nome di CALCOLO DELLE PROBABILITA Come scienza autonoma il C.d.P. nacque nel 600 per merito di Blaise Pascal, che iniziò ad occuparsi di alcune questioni connesse al gioco dazzardo; in seguito si occuparono di questo settore, studiosi come FERMAT, NEWTON, LEIBNITZ e LAPLACE

3 Gli avvenimenti che hanno risultato incerto, perché sono legati al caso, si dicono AVVENIMENTI CASUALI o ALEATORI Ogni possibile risultato di un avvenimento casuale si dice EVENTO SEMPLICE o ELEMENTARE

4 Tutti gli eventi semplici che possono verificarsi come risultato di un avvenimento casuale, si dicono CASI POSSIBILI dellavvenimento casuale Se tutti i casi possibili hanno la stessa possibilità di verificarsi si dicono UGUALMENTE PROBABILI Se si considera uno degli eventi semplici di un avvenimento casuale, fra tutti i casi possibili, quelli che verificano levento considerato, si dicono CASI FAVOREVOLI

5 DEFINIZIONE CLASSICA di PROBABILITA In un avvenimento casuale la probabilità p(E) di un evento semplice E è il rapporto fra il numero dei casi favorevoli allevento E e il numero di casi possibili, purchè siano tutti egualmente possibili p(E)=numero casi favorevoli/numero casi possibili

6 Se un evento si verifica sempre, si dice CERTO e la sua probabilità vale 1 Se un evento non si verifica mai, si dice IMPOSSIBILE e la sua probabilità vale 0 La probabilità di un evento quindi è sempre un numero compreso fra 0 ed 1 La probabilità può anche essere espressa in forma percentuale moltiplicando per 100 il suo valore numerico

7 Dato un evento E di un avvenimento casuale, si dice evento contrario di E levento che si verifica quando non si verifica E Se si indica con U linsieme dei casi possibili e con A linsieme dei casi favorevoli a un evento E, linsieme dei casi favorevoli allevento contrario è il complementare di A rispetto ad U. A U C(A)

8 Un evento che è unione o intersezione di due eventi semplici E 1 e E 2 si dice EVENTO COMPOSTO E 1 = esce un asso E 2 = esce una figura E 1 E 2 =esce un asso o una figura E 1 E 2 =esce un asso e una figura

9 Due eventi semplici di uno stesso avvenimento casuale si dicono fra loro INCOMPATIBILI se, nella stessa prova, il verificarsi di uno di essi esclude il verificarsi dellaltro Ad esempio, nel lancio di un dado, gli eventi semplici : E 1 =esce 5 E 2 =esce un numero minore di 3 sono fra loro incompatibili Due eventi semplici si dicono COMPATIBILI se il verificarsi delluno non esclude il verificarsi dellaltro Ne caso dellestrazione di una carta da un mazzo i due eventi: E 1 =esce una carta di cuori E 2 =esce una figura

10 PROBABILITA TOTALE DI UN EVENTO UNIONE DI DUE EVENTI INCOMPATIBILI p(E 1 UE 2 )=p(E 1 )+p(E 2 ) PROBABILITA TOTALE DI UN EVENTO UNIONE DI DUE EVENTI COMPATIBILI p(E1UE2)=p(E1)+p(E2)-p(E1 E 2 )

11 Dati due eventi E 1 ed E 2, se il verificarsi delluno non incide sulla possibilità che si verifichi laltro, i due eventi si dicono INDIPENDENTI Se il verificarsi di E 1 influisce sul verificarsi di E 2 i due eventi si dicono DIPENDENTI

12 PROBABILITA COMPOSTA DI UN EVENTO INTERSEZIONE DI DUE EVENTI INDIPENDENTI p(E 1 E 2 )=p(E 1 )·p(E 2 ) PROBABILITA COMPOSTA DI UN EVENTO INTERSEZIONE DI DUE EVENTI DIPENDENTI p(E 1 E 2 )=p(E 1 )·p(E 2 |E 1 ) dove p(E 2 \E 1 ) prende il nome di probabilità condizionata di E 2 rispetto ad E 1 e rappresenta la probabilità che si verifichi E 2 dopo che si è verificatoE 1

13 Eventi incompatibili Eventi compatibili Eventi indipendenti Eventi dipendenti Eventi

14 PROBABILITA SPERIMENTALE O STATISTICA

15 La concezione classica di probabilità fornisce una probabilità a priori, cioè una probabilità che si determina prima che levento si verifichi. La probabilità sperimentale fornisce invece una probabilità a posteriori perchè si ottiene dopo aver effettuato un elevato numero di prove dellavvenimento casuale al quale levento si riferisce

16 LA FREQUENZA Consideriamo un esperimento costituito da un numero n di prove effettuate tutte nelle medesime condizioni. Supponiamo Consideriamo un esperimento costituito da un numero n di prove effettuate tutte nelle medesime condizioni. Supponiamo che un evento E si verifichi h volte, si chiama frequenza relativa f il rapporto fra il numero di successi ed il numero di prove. che un evento E si verifichi h volte, si chiama frequenza relativa f il rapporto fra il numero di successi ed il numero di prove. f=h/n con 0f1 f=h/n con 0f1

17 E evidente che la frequenza relativa di un evento assume valori diversi fra loro, e ciò si verifica quando il numero delle prove effettuate non è elevato. Si può però verificare sperimentalmente che se il numero delle prove aumenta, la frequenza relativa allevento E tende a stabilizzarsi su un valore ben preciso.

18 Si definisce probabilità sperimentale (o statistica) di un evento, la frequenza relativa dellevento, calcolata in un numero sufficientemente elevato di prove, effettuate tutte nelle stesse condizioni

19 La probabilità sperimentale si può calcolare ogni volta che si possono effettuare delle prove reali dellavvenimento

20 LA LEGGE DEI GRANDI NUMERI (legge empirica del caso) In una serie molto elevata di prove, effettuate tutte nelle stesse condizioni, la probabilità sperimentale di un evento assume un valore generalmente molto prossimo a quello della probabilità classica e tale approssimazione aumenta allaumentare del numero delle prove


Scaricare ppt "Elementi di calcolo delle probabilità. La parte della matematica che studia gli avvenimenti legati al caso, al fine di stabilire quale possibilità di."

Presentazioni simili


Annunci Google