La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

ANALISI della VARIANZA FATTORIALE Impostazione: E conosciuto: Lanalisi della varianza con un solo fattore. il significato di fattori fissi e casuali. lo.

Presentazioni simili


Presentazione sul tema: "ANALISI della VARIANZA FATTORIALE Impostazione: E conosciuto: Lanalisi della varianza con un solo fattore. il significato di fattori fissi e casuali. lo."— Transcript della presentazione:

1 ANALISI della VARIANZA FATTORIALE Impostazione: E conosciuto: Lanalisi della varianza con un solo fattore. il significato di fattori fissi e casuali. lo schema a blocchi randomizzati. Largomento non è mai stato trattato in precedenti corsi

2 ARGOMENTI TRATTATI Vantaggi e svantaggi dellimpostazione fattoriale. Concetto di interazione tra fattori. Impianto in campo dellesperimento. Randomizzazione completa. Blocchi randomizzati. Esecuzione dei calcoli. Interpretazione dei risultati. Analisi grafica dellinterazione Modelli: a effetti fissi, casuali e misto. Contrasti in un esperimento fattoriale. Confronti multipli in un esperimento fattoriale. Esperimenti fattoriali sbilanciati (cenni). Software disponibile.

3 ANALISI della VARIANZA FATTORIALE VANTAGGI Si può studiare contemporaneamente leffetto di 2 (o più) fattori. Si può identificare linterazione tra fattori maggiore potenza SVANTAGGI difficoltà con esperimenti sbilanciati difficile interpretazione (se i fattori sono più di 2) > complessità calcoli (trascurabile) Da preferire per esperimenti idonei allidentificazione delleffetto di specifici trattamenti, meno idonea allanalisi di sistemi reali

4 LINTERAZIONE Tra 2 (o più) fattori applicati contemporaneamente può esservi: indifferenza sinergismo antagonismo I fattori esercitano il loro effetto senza variazioni dovute al livello degli altri fattori (comportamento additivo) La presenza contemporanea di determinati livelli dei fattori migliora il risultato rispetto alla semplice additività La presenza contemporanea di determinati livelli dei fattori peggiora il risultato rispetto alla semplice additività Comportamenti sinergici o antagonistici indicano INTERAZIONE tra i fattori

5 Linterazione Assenza di interazione: i segmenti sono paralleli Presenza di interazione: i segmenti NON sono paralleli, leffetto di un fattore dipende dal livello dellaltro

6 Principali applicazioni E uno degli strumenti statistici più usati Analisi dei rapporti genotipo-ambiente cultivar x tecnica colturale interazioni tra fertilizzanti COMLETA!!!

7 Il MODELLO dellANOVA a 2 VIE Y ijk = + i + j + ( ) ij + ijk ( ) 1,2 ( ) 2,1 ijk Il valore di un dato (Y ijk ) è la somma delleffetto di uno specifico livello del 1° fattore ( i ), dello specifico livello del 2° fattore ( j ), della loro interazione (( ) ij ) e di una componente accidentale ( ijk )

8 Assunzioni Le stesse dellANOVA a 1 via: omogeneità delle varianze normalità delle popolazioni indipendenza dei dati Proprie dellANOVA a 2 vie i =0 j =0 ( ) ij =0

9 Limpianto in campo della prova Occorre innanzitutto determinare tutte le combinazioni possibili tra i livelli dei fattori. Esempio (didattico) con 2 fattori a 2 livelli: Livello 1 Livello 2 N (kg ha -1 ) P 2 O 5 (kg ha -1 ) 0 60 Le combinazioni sono: N1-P1; N1-P2; N2-P1; N2-P2 Vanno considerate come se fossero singoli trattamenti nellANOVA a 1 via Si ipotizzano 3 ripetizioni 12 parcelle, con i trattamenti da attribuirsi, secondo lo schema sperimentale adottato, casualmente

10 N1-P2 N2-P1 N1-P1 N2-P2 N1-P1 N1-P2 N2-P1 N2-P2 La disposizione in campo Schema a randomizzazione completa Schema a blocchi randomizzati N1-P2 N2-P1 N1-P1 N2-P2 N1-P1 N1-P2 N2-P1 N2-P2 Blocco 1Blocco 2Blocco 3

11 Esecuzione dei calcoli Passo 1: stimare la varianza errore eseguire gli stessi calcoli necessari per lANOVA a 1 via, considerando le combinazioni come fossero singoli trattamenti Si ottiene: devianza e varianza dei trattamenti nel loro complesso (utile successivamente) e devianza e varianza errore Passo 2: stimare le varianze degli effetti semplici sia:p il numero di livelli del fattore A q il numero di livelli del fattore B nrip il numero di ripetizioni consideriamo lesperimento come se vi fosse presente un solo fattore. Quindi si hanno nrip*q unità sperimentali che hanno ricevuto un determinato livello del fattore in esame. Per calcolare la devianza del fattore A è allora sufficiente sostituire ogni dato con la media del livello di A a cui appartiene e calcolare la devianza di tutti i dati così ottenuti: Del tutto analogamente si procede per il fattore b I gradi di libertà sono p-1 e q-1

12 Esecuzione dei calcoli (segue) Passo 3: stimare la varianza dellinterazione La via più semplice è per sottrazione: Dev. Interazione = Dev. Trattamenti - Dev. A -Dev.B si può anche calcolare indipendentemente (utile per ANOVA a 3 o più vie): 1)Porre ogni dato uguale al valore medio della combinazione a cui appartiene 2) sottrarre a ogni dato i valori medi del livello del fattore al quale si riferisce 3) calcolare la devianza dei dati così ottenuti GL = GL trattamenti - GL A - GL B ovvero (p-1)(q-1); infatti (p-1)*(q-1) = pq - p - q + 1 pq = GL trattamenti +1 GL int = GL trattamenti +1 -p - q + 1

13 Esecuzione dei calcoli (segue) Passo 4: impostare la tabella dellANOVA Passo 5: interpretazione osservare innanzitutto la significatività dellinterazione: se leffetto interattivo è significativo va considerata solo linterazione e NON E LECITA ALCUNA CONCLUSIONE SUGLI EFFETTI SEMPLICI. Infatti con interazione, leffetto di un fattore è condizionato dal livello dellaltro. N.B. Se i fattori a e b sono fissi, il test di tutti gli effetti si fa contro lerrore

14 Esempi Interazione e effetti semplici significativi. Interazione e un effetto semplice significativi. Puo Interazione e effetti semplici significativi. Linterazione Puo avere valore pratico trascurabile

15 Un esempio di calcolo

16 Un esempio di calcolo (segue)

17

18 Interpretazione: nonostante una apparente divergenza, i due segmenti sono da considerarsi paralleli in senso statistico, P(Fint) = 0,2 non fornisce evidenze sulla presenza di interazione. Leffetto migliorativo del P e dellN è significativo

19 La presenza di fattori casuali Nellanalisi della varianza fattoriale uno più fattori possono essere random: (cioè i trattamenti sono un campione di infiniti possibili trattamenti e non interessa studiarli in quanto tali, ma per identificare se costituiscono una fonte di variabilità significativa) Casi tipici: gli anni per i quali è ripetuta una sperimentazione. Si è interessati non agli specifici anni, ma li si considera come un campione di possibili andamenti meteorologici. Le località, se intese solo come possibili campi in cui si ha una certa coltura e NON come rappresentative di areali. In genetica, variablità delle popolazioni di partenza per ottenere incroci.( risponde alla domanda: ha effetto la variabilità genetica del genitore maschile, di quello femminile o la loro interazione nel determinare il risultato dellincrocio ?) In agronomia sono frequenti esperimenti con 1 fattore random e altri fattori fissi, poco frequenti quelli con più di 1 fattore random e altri fissi, rarissimi quelli con tutti i fattori random.

20 Trattamento dei dati in presenza di fattori casuali La presenza di fattori casuali non modifica i calcoli di devianze, varianze e gradi di libertà. Sono diversi invece i test F nel caso di modelli MISTI (cioè con presenza di fattori fissi e casuali assieme) o completamente random. Qui viene data una spiegazione intuitiva della diversa struttura dei test F. Per un approccio matematico formale si rimanda a testi specifici (es. Snedecor e Cochran, 1989). Nel caso di schemi fattoriali a 2 vie non ci hanno difficoltà; nel caso di schemi a più vie non si hanno difficoltà se 1 solo fattore è random. I package di calcolo statistico hanno da non molti anni introdotto il trattamento completo dei fattori random, risolvendo il problema. Occorre però riconoscere un fattore random in quanto tale. In generale, in presenza di un fattore random nella stima della varianza di un effetto relativo a un fattore fisso è sempre compresa una quota di varianza attribuibile al fattore casuale: infatti la stima degli i è fatta in funzione di j soggetti a variazione campionaria. Nella stima della varianza di un fattore random non è invece compresa una quota di varianza legata al fattore fisso (gli i sono sempre gli stessi). Linterazione tra un fattore fisso e uno random, essendo attesi effetti diversi se lesperimento viene ripetuto.

21 Trattamento dei dati in presenza di fattori casuali (segue) Si può dimostrare che se il fattore a è fisso e b random: E[var(a)] = 2 + nrip 2 +nrip * q 2 /(p-1) E[var(b)] = 2 + nrip*p 2 E[var(a x b)] = 2 + nrip 2 E[var(a x b)] = 2 Ne consegue che il test corretto per leffetto fisso è contro linterazione, per il fattore random e linterazione contro lerrore. In presenza di 1 solo fattore random, ogni effetto fisso deve essere testato contro la sua interazione con il fattore random, i fattori random e le interazioni tra un fattore fisso e uno random contro lerrore. Intuitivamente, in presenza di fattori casuali, per dichiarare un effetto fisso significativo, non ci basta che il suo effetto sia superiore a quello della variabilità sperimentale, occorre che sia anche maggiore della variabilità indotta dal fattore casuale affinché il suo effetto sia apprezzabile anche in presenza di altri valori del fattore casuale. Da questo ne consegue che il test corretto è contro la sua interazione con il fattore casuale, che comprende, oltre a una quota dovuta alla variabilità accidentale (come ogni varianza stimata), anche una quota di interazione tra il fattore fisso e quello random.

22 Altri tipi di analisi della varianza fattoriale Esperimenti senza ripetizioni in caso di esperimenti fattoriali un esperimento si può impostare senza repliche, assumendo a priori che NON VI SIA INTERAZIONE. Se linterazione è nulla, allora la varianza dellinterazione stima la varianza errore e può essere usata per calcolare i rapporti F relativi agli effetti semplici. Questa impostazione è però in linea di massima sconsigliabile, essendo uno degli scopi primari dellANOVA fattoriale proprio lanalisi dellinterazione. Per il calcolo occorre calcolare le devianze degli effetti semplici e, per sottrazione dalla devianza totale, la devianza errore. Approccio gerarchico In alcuni casi non è possibile un approccio fattoriale pieno: i livelli di un fattore sono diversi a secondo dei livelli dellaltro: Farlo meglio se questa è la lezione


Scaricare ppt "ANALISI della VARIANZA FATTORIALE Impostazione: E conosciuto: Lanalisi della varianza con un solo fattore. il significato di fattori fissi e casuali. lo."

Presentazioni simili


Annunci Google