La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

MATLAB.

Presentazioni simili


Presentazione sul tema: "MATLAB."— Transcript della presentazione:

1 MATLAB

2 Outline Indipendenza lineare, basi, sottospazi Esercizi vari

3 Vettori l.i. I sono linearmenti indipendenti (l.i.) se
Una combinazione lineare dei vettori è nulla se e solo se sono nulli tutti i coefficienti Fissata una base nello s.v. V possiamo associare in modo unico ad un vettore v un elemento di Rn => per vedere se i vettori sono l.i. o no si puo’ operare direttamente in Rn Si scrivono i vettori in componenti e si forma la matrix A che ha come colonne le componenti dei vettori e si calcola il rango della matrix. I vettori corrispondenti alle colonne dei pivot sono quelli l.i.

4 Vettori l.i. II se m=n e i vettori sono l.i. => formano una base di Rn

5 il rango è 3 => i vettori sono l.i. e formano una base per R3
Esempio 1 il rango è 3 => i vettori sono l.i. e formano una base per R3 v1 = [1 0 2]’; v2 = [2 1 1]’; v3 = [1 2 0]’; A = [v1 v2 v3] rank(A) In MATLAB x vedere se i vettori v1,v2,v3 sono l.i formiamo la matrix A avente x colonne le componenti dei vettori e vediamo quanto vale il rango della matrix col comando rank(A); se il rango è 3 => i vettori sono l.i.; in particolare poiché siamo in R3 i 3 vettori formano una base x tale spazio

6 Esempio 2 Dopo aver verificato che i vettori sono una base di R3 esprimere come c.l. dei v1 = [1 1 0’]’; v2 = [0 1 1]’; v3 = [1 0 1]’; v = [1 1 1]’; A = [v1 v2 v3] rank(A) il rango è 3 => i vettori sono l.i. i coefficienti lineari della combinazione si trovano: I coefficienti lineari della combinazione si trovano risolvendo il sistema Ak=v A matrix quadrata di ordine 3 nn singolare => risolviamo il sistema con l’algoritmo di Gauss k=A\v

7 …ricapitolando… costruiamo la matrice A le cui colonne sono le componenti dei vettori i vettori sono l.i.  rank(A)=m (m<=n) se sono l.d. => i coefficienti di una loro combinazione lineare non nulla si trovano risolvendo il sistema Ak=0 Per esprimere un vettore w come c.l. dei vettori della base, si risolve il sistema Ak=w W = span(v1,v2,…,vm) dim W = rank(A) una base BW di W è costituita dai vettori l.i. di A A è la matrix avente x colonne le componenti dei vettori

8 Esercizo 1 Scrivere una funzione di n (n>0) che crei la matrice A:
per n=7 sia W=span(c1,c2,c3,c4) dim(W)=? scrivere una base di W dire quali dei seguenti vettori appartiene a W ed eventualmente scriverne le coordinate rispetto alla base di W trovata: w1=( ) w2=( )

9 Esercizi Dato W = span(w1,w2,w3) ∩ R con:
w1=( ), w2=( ), w3=( ), trovare dimW Dimostrare che i vettori: w1=(1 1 0), w2=(0 1 1), w3=(1 2 1), sono l.d. e scrivere una c.l. nulla con coefficienti non nulli (hint: usare il comando rref ) Dopo aver dimostrato che: w1=(1 2 5), w2=(2 2 4), w3=(1 1 4), formano una base di R3, esprimere w=(3 3 3) come c.l. dei 3 vettori


Scaricare ppt "MATLAB."

Presentazioni simili


Annunci Google