La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Una ragazza di massa 40kg e una slitta di massa 8,4kg sono sulla superficie di un lago gelato, distanti fra loro 15m. Per tirare a sè la slitta la ragazza,

Presentazioni simili


Presentazione sul tema: "Una ragazza di massa 40kg e una slitta di massa 8,4kg sono sulla superficie di un lago gelato, distanti fra loro 15m. Per tirare a sè la slitta la ragazza,"— Transcript della presentazione:

1 Una ragazza di massa 40kg e una slitta di massa 8,4kg sono sulla superficie di un lago gelato, distanti fra loro 15m. Per tirare a sè la slitta la ragazza, per mezzo di una fune di massa trascurabile, esercita sulla slitta una forza orizzontale di 5,2N. Qual è laccelerazione della slitta? Qual è laccelerazione della ragazza? A quale distanza si incontreranno, in assenza di attrito, a partire dalla posizione della ragazza? x x=0x=D TT M=40 kg m=8,4kg D=15m HALLIDAY - capitolo 5 problema 19

2 Accelerazione della slitta: Accelerazione della ragazza: Moto della slitta: Moto della ragazza: La ragazza raggiunge la slitta nellistante t 1 in cui x R =x S :

3 HALLIDAY - capitolo 5 problema 20 Uno sciatore di massa 40kg scende su una pista priva di attrito inclinata di 10° rispetto al piano orizzontale mentre soffia un vento forte parallelo alla pista. Calcolare modulo e direzione della forza esercitata dal vento sullo sciatore se (a) la sua velocità scalare rimane costante; (b) la sua velocità scalare aumenta in ragione di 1m/s 2 ; (c) la sua velocità scalare aumenta in ragione di 2m/s 2. θ P N F x y θ

4 Se la velocità è costante, applichiamo la prima legge di Newton: Supponendo a0, applichiamo la seconda legge di Newton: se a=1m/s 2 è F=28N: vento contrario al moto dello sciatore se a=2m/s 2 è F= -12N: vento favorevole al moto dello sciatore

5 HALLIDAY - capitolo 5 problema 23 La cabina di un ascensore col suo carico ha una massa di 1600kg. Trovate la tensione del cavo di sostegno quando la cabina, mentre sta scendendo a 12m/s, rallenta ad accelerazione costante, fino ad arrestarsi in 42m. T P x

6 Seconda legge di Newton: Moto della cabina: Calcoliamo ora listante t 1 in cui la cabina si ferma: Al tempo t 1 la cabina avrà percorso un tratto h=42m: v 0 =12m/s a<0 incognita

7 HALLIDAY - capitolo 5 problema 29 Un blocco di massa 5,00kg è trascinato su un piano orizzontale privo di attrito da una corda che esercita una forza F di modulo 12,0N con un angolo θ di 25,0° rispetto al piano orizzontale. Qual è il modulo dellaccelerazione del blocco? Lintensità della forza F viene lentamente aumentata. Quale sarà il suo valore allistante in cui il blocco è sollevato completamente dal suolo? Quale sarà il modulo dellaccelerazione del blocco in quellistante? F θ P N x y

8 Secondo principio della dinamica: Scomponendo lungo gli assi cartesiani: accelerazione: Supponendo F variabile, il blocco si distacca dal pavimento nellistante in cui questo cessa di esercitare una reazione (N=0): Dalla seconda equazione del moto: Imponendo la condizione N=0:

9 HALLIDAY - capitolo 5 problema 32 Tre blocchi, collegati tra loro come in figura, sono spinti verso destra su un piano orizzontale privo di attrito da una forza T 3 =65,0N. Se m 1 =12,0kg, m 2 =24,0kg e m 3 =31,0kg, calcolare laccelerazione del sistema, la tensione T 1 e la tensione T 2. m1m1 m2m2 m3m3 T1T1 T2T2 T3T3 x

10 Scriviamo la seconda legge di Newton per i 3 blocchi, studiando le sole componenti delle forze lungo lasse x: (N.B.: poichè le funi sono inestensibili, laccelerazione è la stessa per i 3 blocchi) Sommando membro a membro le 3 equazioni: Sostituendo il valore di a si ricavano T 1 e T 2 :

11 HALLIDAY - capitolo 5 problema 35 Una scimmia di massa 10kg si arrampica su una fune priva di massa che può scorrere, senza attrito, su un ramo dalbero ed è fissata ad un contrappeso di massa 15kg, appoggiato al suolo. Qual è il minimo valore del modulo dellaccelerazione che deve avere la scimmia per sollevare dal suolo il contrappeso? Se, dopo aver sollevato il contrappeso, la scimmia smette di arrampicarsi e rimane appesa alla fune, quali sono il modulo e la direzione della sua accelerazione? E qual è la tensione della fune? T T mg Mg N x

12 Per studiare il moto della scimmia che si arrampica applichiamo la seconda legge di Newton: La cassa si trova in quiete, quindi applichiamo la prima legge di Newton: Affinchè la cassa si sollevi, deve annullarsi la reazione normale:

13 Quando la scimmia cessa di arrampicarsi, e la cassa si è sollevata, si ha una situazione analoga a quella del dispositivo di Atwood. T T mg Mg N x

14 HALLIDAY - capitolo 5 problema 37 Un blocco di massa m 1 =3,70kg, su un piano privo di attrito, inclinato di un angolo θ=30,0°, è collegato da una corda che passa sopra una puleggia priva di massa e di attrito, a un altro blocco, sospeso in verticale, di massa m 2 =2,30kg. Quali sono le accelerazioni di ciascun blocco e la tensione nella corda? θ T P2P2 T P1P1 N x y x θ

15 Corpo m 2 : Corpo m 1 : Laccelerazione dei due corpi è la stessa: a 1 =a 2 =a Dalla prima equazione si ricava T: Sostituendo nella seconda: La tensione è quindi:

16 HALLIDAY - capitolo 5 problema 50 Immaginiamo un modulo di atterraggio che si stia avvicinando alla superficie di Callisto, una delle lune di Giove. Se la spinta verso lalto del motore è di 3260N, il veicolo scende a velocità costante; se invece è di soli 2200N, accelera verso il basso con modulo di 0,39m/s 2. Qual è il peso del modulo di atterraggio in prossimità della superficie di Callisto? Qual è la sua massa? Quanto vale laccelerazione di gravità vicino alla superficie di Callisto? P F1F1 P F2F2 velocità costante accelerazione verso il basso

17 Se la navicella scende con velocità costante: Se la navicella accelera verso la superficie della Luna: Accelerazione di gravità su Callisto:

18 HALLIDAY - capitolo 6 problema 9 Un operaio spinge orizzontalmente una cassa di 35kg con una forza di 110N. Il coefficiente di attrito statico tra cassa e terreno vale 0,37. Qual è, in questa situazione, la massima intensità f as,max della forza di attrito statico? La cassa si sposterà? Qual è la forza di attrito esercitata dal suolo sulla cassa? Supponiamo ora che un operaio venga in suo aiuto tirando la cassa verticalmente verso lalto. Qual è la minima forza di alleggerimento necessaria perchè la spinta di 110N del primo operaio sia sufficiente a far spostare la cassa? Se, invece, il secondo operaio interviene tirando anche lui orizzontalmente, qual è la minima forza di trazione che consentirà lo spostamento della cassa?

19 F P N f as x y Reazione normale: Massima forza di attrito statico: Poichè F

20 Supponiamo ora che il secondo operaio tiri la cassa verso lalto con una forza F 1 F P N f as F1F1 x y Reazione normale: Perchè la cassa inizi a muoversi deve essere f as =f as,max :

21 Supponiamo infine che il secondo operaio applichi una forza F 2 orizzontale F P N f as F2F2 x y Reazione normale: Perchè la cassa inizi a muoversi deve essere f as =f as,max :

22 Una forza orizzontale F di modulo 12N spinge un blocco del peso di 5,0N contro una parete verticale. I coefficienti di attrito fra parete e blocco sono μ s =0,60 e μ d =0,40. Allinizio il blocco è fermo. Comincerà a muoversi? Quale sarà, espressa mediante versori, la forza esercitata dal blocco sulla parete? HALLIDAY - capitolo 6 problema 11 x y F P N fafa Nella direzione x il blocco è in equilibrio: Lattrito è statico o dinamico? Essendo P

23 HALLIDAY - capitolo 6 problema 20 I blocchi A e B della figura pesano rispettivamente 44N e 22N. Trovate il peso del blocco C da collocare su A per impedirne lo slittamento, sapendo che fra A e il piano dappoggio μ s =0,20. Togliamo bruscamente il blocco C: quale sarà laccelerazione di A per μ d =0,15? A C B T PBPB T P A +P C N f as x y x Blocco B: Blocchi A+C: A+C restano fermi finchè f as f as,max :

24 A B T PAPA N f ad T PBPB x x y Supponiamo ora di togliere il blocco C Blocco B: Blocco A: Scomponendo lungo gli assi: Ricordando che f ad =μ d N, m A =P A /g, m B =P B /g e ponendo a=a A =a B :

25 HALLIDAY - capitolo 6 problema 29 Un giovane di massa 80kg, seduto su una poltroncina di una ruota panoramica, ruota lungo una circonferenza di raggio 10m con asse orizzontale con velocità di modulo costante 6,1m/s. Che periodo ha il moto? Che intensità ha la forza normale che il seggiolino applica al giovane quando questi si trova nel punto più alto della traiettoria e nel punto più basso? Periodo: R Nel punto più alto: mg N N Nel punto più basso:

26 HALLIDAY - capitolo 6 problema 35 La figura mostra un disco di massa m=1,50kg che percorre una circonferenza di raggio r=20,0cm sul piano privo di attrito di un tavolo e sostiene una massa M=2,50kg appesa a un filo che passa attraverso un foro al centro del cerchio. Trovate a quale velocità deve muoversi m per trattenere M. Mg T T Equilibrio di M: Moto di m: Si può quindi ricavare la velocità:

27 HALLIDAY - capitolo 6 problema 50 Un bambino mette il cestino della merenda sul bordo esterno di una giostra di raggio 4,6m che compie un giro ogni 30s. Qual è la velocità di un punto su un bordo della giostra? Quanto deve essere il minimo coefficiente di attrito statico fra la giostra e il cestino perchè questo rimanga al suo posto? R Velocità dei punti della giostra: La forza centripeta che mantiene il cestino in rotazione con la giostra è lattrito statico: f as


Scaricare ppt "Una ragazza di massa 40kg e una slitta di massa 8,4kg sono sulla superficie di un lago gelato, distanti fra loro 15m. Per tirare a sè la slitta la ragazza,"

Presentazioni simili


Annunci Google