La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Esempio -1 Individuare il centro di massa di un sistema di tre particelle di massa m 1 = 1kg, m 2 = 2 kg, e m 3 = 3kg, poste ai vertici di un triangolo.

Presentazioni simili


Presentazione sul tema: "Esempio -1 Individuare il centro di massa di un sistema di tre particelle di massa m 1 = 1kg, m 2 = 2 kg, e m 3 = 3kg, poste ai vertici di un triangolo."— Transcript della presentazione:

1 Esempio -1 Individuare il centro di massa di un sistema di tre particelle di massa m 1 = 1kg, m 2 = 2 kg, e m 3 = 3kg, poste ai vertici di un triangolo equilatero con lato = 1m y x m1m1 m3m3 m2m2

2 Avendo posizionato il triangolo sul piano x-y come in figura, risulta: y m1m1 m3m3 m2m2 x 1 = 0 y 1 = 0 x 2 = 1 y 2 = 0 x 3 = ½ y 3 = ½ √3 x CM = ( ∑m i x i ) / ( ∑m i ) = = 1 x x x ½ / (1+2+3) =3,5 / 6 y CM = ( ∑m i y i ) / ( ∑m i ) = = 1 x x x ½ √3/ (1+2+3) = 2,6 / 6

3 Esempio -2 Sulle tre particelle localizzate come in figura agiscono le tre forze indicate y m1m1 m3m3 m2m2 x Quesito: Trovare l’accelerazione del centro di massa del sistema 8 kg 4 kg 16 nt 14 nt 6 nt CM

4 x CM = ( ∑m i x i ) / ( ∑m i ) = (8 x x (-2) + 4 x 1) / 16 = 28/16 x CM = 7/4 m y CM = ( ∑m i y i ) / ( ∑m i ) = (8 x x x (-3)) / 16 = 4 / 16 y CM = 1/4 m

5 Determiniamo adesso la risultante delle forze agenti sul sistema: F x = 0 – 6 nt + 14 nt = 8nt F y = 16nt = 16 nt La risultante delle forze ha pertanto modulo: F = (F x 2 + F y 2 ) ½ = ( ) ½ = 18 nt E forma con l’asse x un angolo θ dato da θ = arctan (16nt/8 nt) = arctan (2) = 63°

6 L’accelerazione del centro di massa sarà quindi a = F / M tot = 18 nt / 16 kg = 1,1 m/s 2 e formerà con l’asse x lo stesso angolo di 63 gradi

7 Esempio -3 Consideriamo due blocchi A e B, di massa m A e m B, uniti da una molla a riposo, su un piano orizzontale privo di attrito. Allontaniamo i blocchi, tendendo la molla e quindi lasciamoli liberi. Descrivere il moto che ne segue.

8 OK, qualitativamente sappiamo già che tipo di moto ci aspettiamo: Ma quali considerazioni fisiche possiamo fare ?

9 a)Il sistema è isolato b)Non agiscono forze esterne su di esso c)Le uniche forze presenti sono quelle interne generate dalla molla che si annullano a vicenda Applichiamo la legge di conservazione della quantità di moto: la quantità di moto di un sistema isolato si conserva Quando abbondoniamo i due blocchi, risulta P = 0 Quindi deve essere P=0 in ogni istante successivo Questo certamente è possibile anche se i due blocchi si muovono: la quantità di moto è una grandezza vettoriale. Quindi se in un dato istante uno dei due blocchi avrà una quantità di moto positiva, l’altro l’avrà negativa. P = 0 = m A v A + m B v B  m B v B = − m A v A  v A = −(m B / m A ) v B

10 Quindi: le velocità sono sempre di segno opposto e con il rapporto fra i moduli inverso al rapporto fra le masse L’energia cinetica di A vale: K A = ½ m A v A 2 che possiamo scrivere come: (m A v A ) 2 / 2m A Analogamente: K B = ½ m B v B 2 che possiamo scrivere come: (m B v B ) 2 / 2m B Da cui, poiché : (m A v A ) 2 = (m B v B ) 2 risulta: K A / K B = m B / m A Cioè le energie cinetiche sono inversamente proporzionali alle rispettive masse Poiché l’energia meccanica si conserva, i blocchi continueranno a oscillare scambiando Continuamente energia cinetica e energia potenziale.

11 Esempio -4 Consideriamo il caso di una palla lanciata in aria e poi afferrata al rientro a terra. A scopo esemplificativo, assumeremo che l’agente che lancia la palla, essendo ancorato a terra faccia parte della terra. Considereremo anche trascurabile l’attrito dell’aria. Il sistema in esame in sostanza è il sistema terra- palla. Le forze in gioco fra i due elementi del sistema, e cioè la terra e la palla, sono solo forze interne. Definiremo un sistema di riferimento in cui la terra è inizialmente ferma, e rispetto al quale, al momento del lancio, subirà un contraccolpo.

12 Inizialmente, la quantità di moto del sistema terra-palla p T-P è nulla, e poiché non vi sono forze esterne che agiscono sul sistema, resterà sempre nulla. Quindi in qualsiasi istante successivo: p T-P = 0 = p T + p P 0 = m T v T + m P v P m T v T = − m P v P Quindi, quando la palla si allontana la terra retrocede e quando la palla si Riavvicina, la terra va in contro alla palla. I rapporto dei moduli delle velocità è inverso rispetto al rapporto fra le masse, il che ci dimostra che trascurare l’effetto del moto della Terra è lecito, essendo questo rapporto pari a circa 10 −24 !

13 Esempio -5 Il caso della cinghia convettrice, in cui del materiale viene continuamente versato su una cinghia scorrevole come in figura TROVARE LA FORZA NECESSARIA PER FARE SCORRERE LA CINGHIA A VELOCITA’ COSTANTE

14 Indichiamo con m la massa del materiale sulla cinghia e M la massa della cinghia. La quantità di moto del sistema (cinghia + materiale sulla cinghia) sarà: P = (m + M) v e la forza che cerchiamo è F = dP/dt Cioè: F = d/dt [ (m+M) v ] = (m+M) dv/dt + v d/dt (m+M) = (m+M) dv/dt + v dm/dt + v dM/dt Poiché M e v sono costanti l’equazione si riduce a: F = v dm/dt


Scaricare ppt "Esempio -1 Individuare il centro di massa di un sistema di tre particelle di massa m 1 = 1kg, m 2 = 2 kg, e m 3 = 3kg, poste ai vertici di un triangolo."

Presentazioni simili


Annunci Google