La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Algebra di Boole. Chi era Boole? George Boole, è stato un matematico e logico britannico, ed è considerato il fondatore della logica matematica. Nel 1854,

Presentazioni simili


Presentazione sul tema: "Algebra di Boole. Chi era Boole? George Boole, è stato un matematico e logico britannico, ed è considerato il fondatore della logica matematica. Nel 1854,"— Transcript della presentazione:

1 Algebra di Boole

2 Chi era Boole? George Boole, è stato un matematico e logico britannico, ed è considerato il fondatore della logica matematica. Nel 1854, pubblicò un libro, An Investigations of the Laws of Thought (Un esame sulle leggi logiche del pensiero), in cui dimostrava che la maggior parte del pensiero logico, privata di particolari irrilevanti e verbosità, potesse essere concepita come una serie di scelte. Questa idea è divenuta la base dei computer.

3 DEFINIZIONE DI STRUTTURA ALGEBRICA: Insieme di elementi per il quale vengono definite un insieme di operazioni con particolari proprietà.

4 L’ ALGEBRA BOOLEANA È… NomeSimboliUnaria/Binaria SOMMA LOGICA +, ∨, OR binaria PRODOTTO LOGICO *, ∧, AND binaria NEGAZIONE LOGICA o COMPLEMENTO ─, ⌐, ‾, ‘, NOTunaria

5 IMPORTANTE! Gli operatori logici visti e in generale le funzioni che operano sulle variabili booleane sono dette funzioni booleane e possono produrre solo i valori 0 e 1

6 Cosa rappresenta l’ALGEBRA BOOLEANA? L’algebra booleana è adatta per rappresentare “eventi binari”, cioè condizioni che possono assumere solo due valori –Esempio: Una lampadina può essere accesa (a questa condizione si associa il valore 1  vero) oppure spenta (valore 0  falso)

7 Quindi… …si studia l’algebra booleana poiché le funzioni dell’algebra booleana sono isomorfe ai CIRCUITI DIGITALI. In altre parole, un circuito digitale può essere espresso tramite un’espressione booleana e viceversa.

8 ALGEBRA BOOLEANA E PORTE LOGICHE (LOGICAL GATE) All’interno di un elaboratore è presente una pluralità di dispositivi elettronici elementari che applicano i connettivi e le funzioni dell’algebra booleana. Ciascun dispositivo elementare prende il nome di PORTA LOGICA ed ha associato un simbolo usato nei testi specialistici e in sede di progetto…

9

10 DIGITAL ELECTRONICS - LOGIC CIRCUITS LOGIC circuits are normally composed of ‘gates’. A combination of gates make up a circuit and some digital circuits can be extremely complex. It is the logic gates that produce pulses of electrical current (1s and 0s). At school level, digital logic circuits are relatively simple. Below are simple drawings that help explain the two most popular logic gates - the AND gate and the OR gate. REMEMBER: When the bulb lights this represents a ‘1’ as current is running through the filament. If current is not running through the filament the bulb will not light and this represents a ‘0’ (zero).

11 The AND gate

12 The OR gate

13 PRECEDENZA DEGLI OPERATORI LOGICI: 1.Operatore unario: NOT 2.Operatore binario: AND 3.Operatore binario: OR

14 IMPORTANTE:  Tutte le funzioni booleane possono essere espresse come combinazioni di questi tre operatori  Ad ogni funzione di base corrisponde una porta logica e quindi ogni espressione booleana può essere tradotta in un circuito  Tramite le proprietà dell’algebra booleana è possibile semplificare espressioni booleane complesse

15 Anche i circuiti corrispondenti saranno più semplici e richiederanno un minor numero di porte logiche Minori costi di realizzazione dei circuiti e minore occupazione di spazio Le espressioni booleane vengono utilizzate nei linguaggi di programmazione per la defiinizione dei criteri decisionali

16 Cominciamo con i primi esercizi Ricorda: Per ricavare la tabella di verità da una funzione logica si applicano tutte le combinazioni di valori agli ingressi e si valutano le uscite

17 ESERCIZI

18 ABf

19 ABf

20 Delle funzioni NAND e NOR c’è anche il simbolo circuitale:

21 ABf

22 ABC B∨CB∨C f

23 ORA COSTRUIAMO I CIRCUITI

24

25 Esempio 2:

26 Tabella di verità esempio 2 (prima parte)

27 Tabella di verità esempio 2 (seconda parte)

28 La semplificazione delle funzioni

29 Le leggi di De Morgan nel caso generale Prova a domostrarle nel caso di due variabili!

30 Dimostriamo il teorema di De Morgan:

31 Semplifichiamo

32 Soluzione:

33 Le due funzioni sono equivalenti (hanno la stessa tabella di verità), ma la seconda funzione è realizzabile con un circuito più semplice:

34 BIBLIOGRAFIA AlgebraDiBoole.pdf AlgebraDiBoole.pdf 2.htm 2.htm ad/elettronica3/AlgebraDiBoole.pdf ad/elettronica3/AlgebraDiBoole.pdf


Scaricare ppt "Algebra di Boole. Chi era Boole? George Boole, è stato un matematico e logico britannico, ed è considerato il fondatore della logica matematica. Nel 1854,"

Presentazioni simili


Annunci Google