La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta “un sesto” del rettangolo, cioè.

Presentazioni simili


Presentazione sul tema: "Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta “un sesto” del rettangolo, cioè."— Transcript della presentazione:

1

2 Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta “un sesto” del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso. Intero frazionato 1 6 Frazione Rappresenta una sola delle parti uguali in cui si divide un intero, per questo tale frazione è chiamata unità frazionaria. 1 6

3 Le parole delle matematica 5 6 NUMERATORE LINEA DI FRAZIONE DENOMINATORE Consideriamo un intero e dividiamolo in sei parti uguali Consideriamo 4 volte l’unità frazionaria Prendiamo l’unità frazionaria = 4 6 La frazione è un operatore che ci permette di dividere l’intero in parti uguali e di considerarne alcune.

4 Frazioni di questo tipo, rappresentano parti più piccole dell’intero e si dicono frazioni proprie. Una frazione si dice propria se operando con essa su una grandezza si ottiene una grandezza omogenea e più piccola di quella data. In essa il numeratore è minore del denominatore Consideriamo le frazioni: e operiamo con esse su un intero.

5 Frazioni di questo tipo, come vedi, rappresentano parti più grandi dell’intero e si dicono frazioni improprie. Una frazione si dice impropria se operando con essa su una grandezza si ottiene una grandezza omogenea e più grande di quella data. In essa il numeratore è maggiore del denominatore Consideriamo le frazioni:e operiamo con esse su un intero.

6 Frazioni di questo tipo, come vedi, rappresentano l’intero o un multiplo dell’intero e si dicono frazioni apparenti. Una frazione si dice apparente se operando con essa su una grandezza si ottiene una grandezza omogenea congruente o multipla di quella data. In essa il numeratore è uguale o multiplo del denominatore Consideriamo le frazioni: e operiamo con esse su un intero.

7 Consideriamo due frazioni e operiamo con esse su uno stesso intero, per esempio il segmento AB. Due frazioni si dicono complementari se, operando con esse su una grandezza, se ne ottengono due omogenee la cui somma è congruente alla grandezza su cui si è operato. Operando con le due frazioni: su una grandezza che rappresenta l’intero abbiamo ottenuto, quindi, due grandezze che sommate tra loro ci danno ancora la grandezza iniziale, cioè l’intero. AB C

8 Consideriamo le frazioni: e operiamo con esse su una stessa grandezza;osserviamo e confrontiamo i tre segmenti ottenuti AC, AC’ e AC’’; essi sono congruenti. AB AB AB C C’ C’’ Le frazioni: si chiamano frazioni equivalenti Due o più frazioni si dicono equivalenti se, operando con esse su una grandezza, si ottengono grandezze congruenti.

9 Osserviamo le tre frazioni equivalenti notiamo che si può passare dall’una all’altra moltiplicando o dividendo per uno stesso numero i loro termini: 3 4 x 2 ovvero 6 8 = : Da questa osservazione possiamo dedurre la proprietà invariantiva delle frazioni che dice: Moltiplicando o dividendo i termini di una frazione per uno stesso numero (diverso da zero) si ottiene una frazione equivalente alla data. Ogni frazione ha quindi infinite frazioni a essa equivalenti. Esempio:

10 Consideriamo le frazioni: e proviamo ad applicare a esse la proprietà invariantiva dividendo i loro termini per uno stesso numero: 8 10 : 2 Possiamo applicarla perché 8 e 10 ammettono il divisore comune 2; = ? 3 8 Non possiamo applicarla perché 3 e 8 non ammettono divisori comuni; essi infatti sono primi fra di loro. In generale diremo che: Una frazione è riducibile se numeratore e denominatore ammettono dei divisori comuni. Una frazione è irriducibile se numeratore e denominatore sono numeri primi fra loro.

11 Semplificare una frazione riducibile vuol dire trasformarla in un’altra equivalente avente i termini più piccoli. La semplificazione si effettua dividendo numeratore e denominatore per un loro divisore comune. Esempio: Proviamo a semplificare le seguenti frazioni: : 2 : 3 non può essere semplificata perché è una frazione irriducibile. :5 = = = Le frazioni così ottenute si dicono ridotte ai minimi termini.

12 Sai confrontare due frazione per riconoscere qual è la maggiore o la minore o per constatare che sono uguali? Per farlo operiamo su una stessa grandezza e confrontiamo le grandezze ottenute. 1.Se le due frazioni sono equivalenti, sappiamo che rappresentano la stessa parte di grandezza, quindi sono anche uguali. 2. Consideriamo due frazioni, per esempio 5/3 e 7/9, e operiamo con esse su una stessa grandezza: Date due frazioni, una propria e l’altra impropria, è sempre maggiore quella impropria. Ne deduciamo che: 5 3 di AB A BC 7 9 AC’B

13 3a) Consideriamo due frazioni proprie aventi lo stesso denominatore, per esempio 3/7 e 5/7, e operiamo con esse su una stessa grandezza: 3 7 di AB ACB 5 7 AC’B

14 3b) Consideriamo ora due frazioni improprie aventi lo stesso denominatore, per esempio 5/3 e 7/3, e operiamo con esse su una stessa grandezza: Ne deduciamo che: Se due frazioni hanno lo stesso denominatore, è maggiore quella che ha il numeratore maggiore. 5 3 di AB ACB 7 3 A C’ B

15 4) Consideriamo due frazioni proprie aventi lo stesso numeratore, per esempio 3/7 e 3/4, e operiamo con esse su una stessa grandezza: Ne deduciamo che: Se due frazioni hanno lo stesso numeratore, è maggiore quella che ha il denominatore minore. 3 7 di AB ABC 3 4 AC’B

16 5) Consideriamo due frazioni proprie che abbiano numeratore e denominatore diversi, per esempio 5/7 e 3/4, per poterle confrontare si riducono al m.c.d. (minimo comune denominatore) e m.c.d. (7; 4) = : 7 x 5 = : 4 x 3 = Riassumendo: Se le due frazioni sono una propria e l’altra impropria, è maggiore quella impropria. Se due o più frazioni hanno lo stesso denominatore, è maggiore quella che ha numeratore maggiore. Se due o più frazioni hanno lo stesso numeratore, è maggiore quella che ha denominatore minore.

17


Scaricare ppt "Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta “un sesto” del rettangolo, cioè."

Presentazioni simili


Annunci Google