La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Rette nel piano cartesiano Daniela Valenti, Treccani Scuola.

Presentazioni simili


Presentazione sul tema: "Rette nel piano cartesiano Daniela Valenti, Treccani Scuola."— Transcript della presentazione:

1 Rette nel piano cartesiano Daniela Valenti, Treccani Scuola

2 Rette sulla Terra e in cielo Pensate di trovare le rette soltanto in matematica?

3 Daniela Valenti, Treccani Scuola Equazione di una retta parallela all’asse x La scia di un aereo fa pensare ad una retta generata da un punto che ‘va dritto senza curvare’. L’animazione ‘scia_retta1.ggb’ visualizza l’idea sul piano cartesiano.‘scia_retta1.ggb’ Un punto P si muove sul piano, perciò ha coordinate variabili ( x, y ). In un primo caso P lascia come ‘scia’ una retta r parallela all’asse x. Osservo le coordinate di P e noto che: x varia durante il movimento; y rimane sempre uguale a 2. ‘Traduco’ l’osservazione nel linguaggio matematico: La retta r ha equazione y = 2.

4 Daniela Valenti, Treccani Scuola Equazione di una retta parallela all’asse y Nell’animazione ‘scia_retta2.ggb’ P lascia come ‘scia’ la retta s parallela all’asse y.‘scia_retta2.ggb’ Osservo le coordinate di P e noto che: x rimane sempre uguale a 3; y varia durante il movimento. ‘Traduco’ l’osservazione nel linguaggio matematico: La retta s ha equazione x = 3

5 Daniela Valenti, Treccani Scuola Equazione di una retta Nella terza animazione, ‘scia_retta3.ggb’ la retta t non è parallela ad uno degli assi cartesiani; come trovare l’equazione della retta t ?‘scia_retta3.ggb’ Rimane l’idea di osservare le coordinate (x, y) del punto P che percorre la retta, ma ora conviene pensare un segmento della retta come un tratto di strada da percorrere.

6 Daniela Valenti, Treccani Scuola Attività 1 Per rispondere a questa domanda dividetevi in gruppi di 2 – 4 persone; ad ogni gruppo è data una scheda di lavoro da completare. Avete 30 minuti di tempo Come trovare un’equazione che ‘obbliga’il punto P a percorrere proprio la retta t ?

7 Che cosa abbiamo trovato Daniela Valenti, Treccani Scuola

8 Pendenza di un segmento Daniela Valenti, Treccani Scuola

9 Pendenza di un segmento Daniela Valenti, Treccani Scuola File ‘Pendenza_segmento’‘Pendenza_segmento’

10 Pendenza di un segmento Daniela Valenti, Treccani Scuola

11 Pendenza di una retta Daniela Valenti, Treccani Scuola File ‘Pendenza_retta’‘Pendenza_retta’

12 Equazione della retta per due punti Daniela Valenti, Treccani Scuola

13 Equazione della retta per due punti Daniela Valenti, Treccani Scuola File ‘Equazione_retta’‘Equazione_retta’

14 Equazione della retta per due punti Daniela Valenti, Treccani Scuola Una prima conclusione di carattere generale L’equazione della retta che passa per due dati punti A(x A, y A ) e B(x B, y B ) si scrive in una delle forme seguenti: y = mx + q se x A ≠ x B x = k se x A = x B = k

15 Equazione della retta per due punti Esempi e riflessioni Daniela Valenti, Treccani Scuola Equazioni del tipo ax + by + c = 0

16 Equazione della retta in forma implicita Daniela Valenti, Treccani Scuola Una seconda conclusione di carattere gene rale Si può sempre scrivere l’equazione di una retta nella seguente forma ax + by + c = 0 che prende il nome di equazione della retta in forma implicita.

17 Equazione ax + by + c = 0 Casi particolari Daniela Valenti, Treccani Scuola Equazioni del tipo y = mx + q forma esplicita Equazioni del tipo x = k

18 Caratteristiche delle equazioni di una retta Daniela Valenti, Treccani Scuola Sono tutte equazioni di 1° grado: sono somme di monomi con le lettere x e y che compaiono al massimo al 1° grado. Proprio perché rappresentano rette, le equazioni di 1° grado prendono anche il nome di equazioni lineari. Le lettere x e y indicano nel piano cartesiano le coordinate variabili di un punto P che percorre la retta. Idea alla base della GEOMETRIA ANALITICA dovuta a due matematici francesi del XVII secolo.

19 Fermat e Cartesio ‘inventano’ la geometria analitica Fermat (1637) «Ogni volta che due quantità incognite sono legate da un’equazione, si ha una linea che può essere retta o curva» Cartesio (1637) «Prendendo successivamente infinite diverse grandezze per la linea x, se ne troveranno altrettante infinite per la linea y e così si avrà un’infinità di diversi punti per mezzo dei quali si descrive la curva richiesta». Un’equazione in x e y stabilisce una dipendenza fra due quantità variabili. Daniela Valenti, Treccani Scuola


Scaricare ppt "Rette nel piano cartesiano Daniela Valenti, Treccani Scuola."

Presentazioni simili


Annunci Google