La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis1 Trasmissione di segnali a lunga distanza Dispositivi integrati miniaturizzati.

Presentazioni simili


Presentazione sul tema: "LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis1 Trasmissione di segnali a lunga distanza Dispositivi integrati miniaturizzati."— Transcript della presentazione:

1 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis1 Trasmissione di segnali a lunga distanza Dispositivi integrati miniaturizzati. Ottica integrata = tecnologia di integrare dispositivi ottici e componenti per la generazione, la ricombinazione, la modulazione, la rivelazione di luce su un singolo substrato (chip). Dispositivi optoelettronici Si fonda sulla riflessione totale Ottica guidata

2 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis2  E =E 0 cos (kx-  t) E’ caratterizzata da lunghezza d’onda e frequenza o periodo di oscillazione T ( =cT=c/ ) E’ caratterizzata dalla direzione di oscillazione del campo elettrico E detta direzione di polarizzazione B =B 0 cos (kx-  t) Onda trasversa

3 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis3 E B Onda trasversa elettromagnetica Fronte d’onda k Il piano che contiene i vettori campo elettrico e magnetico è il fronte d’onda Onda piana

4 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis4 Onda trasversa elettromagnetica k è la direzione di propagazione E è la direzione di polarizzazione c è la velocità di propagazione In un mezzo materiale, la velocità diminuisce di un fattore n tipico del materiale stesso. v=c/nn indice di rifrazione E B k Materiale n (589 nm) elio1, Aria (azoto)1,000 3 anidride carbonica 1,000 4 ghiaccio1,31 acqua1,333 etanolo1,36 glicerina1,473 sale1,516 vetro (tipico)1,5-1,9 diamante2,419 silicio3,4 fosfuro di gallio3,5 Se l’onda si propaga in una direzione generica? L’ortogonalità tra i vari elementi rimane. Mettiamoci nel piano individuato da k e E k  y z E

5 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis5 Sistema idealizzato Specchi senza perdite. Il fascio non subisce attenuazione lungo la direzione di propagazione. Si associa ad ogni raggio una onda piana elettromagnetica trasversale (TEM) e Il campo elettrico finale è la somma di queste onde piane. Consideriamo una onda monocromatica di lunghezza d’onda = 0 /n e vettore k = nk 0 e velocità di fase c = c 0 /n con n indice di rifrazione del mezzo tra gli specchi. Ad ogni riflessione la fase dell’onda salta di 180°. Dopo due riflessioni lo sfasamento è di 360°, come a dire 0°. Assumiamo polarizzazione nel piano della guida. Campo E parallelo agli specchi Guide d’onda planari ideali

6 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis6 Si può imporre una condizione di autoconsistenza che dopo 2 riflessioni l’onda riproduce esattamente se stessa. I campi che soddisfano ciò sono i MODI della guida d’onda. I modi sono campi che mantengono la stessa distribuzione trasversale e la stessa polarizzazione a tutte le distanze lungo la guida d’onda. Nel nostro caso si ha che la differenza di cammino percorsa nei due tratti è: se essa è pari ad un numero intero di abbiamo interferenza costruttiva dei due fronti d’onda. Ovvero: con m un qualunque numero intero Quindi la condizione è soddisfatta solo per certi angoli:

7 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis7 Quindi l’onda guidata è costituita da due onde piane che viaggiano a ±  rispetto all’asse z e nel piano y-z. Si può definire una costante di propagazione  = k z =k cos . Poichè  è quantizzato lo sarà anche .  m = k cos  m e quindi: Modi di più alto ordine (più obliqui) viaggiano con più basse costanti di propagazione. Il modo m=1 viaggia con l’angolo  minore, mentre modi con alto m viaggiano con angoli più alti e sono più obliqui. Anche la componente y di k (k y = nk 0 sin  ) sarà quantizzata:

8 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis8 L’ampiezza complessa del campo totale nella guida è la sovrapposizione di due onde piane TEM una che viaggia nel verso positivo ed una nel verso negativo dell’asse y. Onda viaggiante nel verso positivo Onda viaggiante nel verso negativo Esistono modi simmetrici (m dispari = componenti delle onde si sommano) e asimmetrici per cui le componenti si sottraggono (m pari). Il campo totale sarà: per modi dispari eper modi pari In generale il campo elettrico può essere scritto: con e per modi dispari e pari

9 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis9 Distribuzioni trasversali di u m (y) Ogni modo può essere considerato come una onda stazionaria nella direzione y che viaggia nella direzione z. I campi tendono a zero per y = ± d/2 per tutti i modi così che le condizioni al contorno sono sempre soddisfatte. Poichè le onde sono polarizzate parallelamente a x il campo elettrico sarà parallelo alla direzione x e quindi l’onda guidata si dice trasversale elettrica (TE).

10 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis10 Numero dei modi Si definisce un numero massimo di modi che la guida d’onda può trasmettere. sin  m = m /2d e poiché sin  m < 1 si ha che il massimo valore di m è il più grande intero più piccolo di 2d/. M è il numero di modi della guida d’onda. La luce può essere trasmessa nella guida in non più di M modi ottici. Il numero di modi aumenta con la separazione tra i due specchi (d). Se 2d/  1 M=0 che vuol dire che la guida non supporta nessun modo. La lunghezza d’onda max = 2d è detta di cut off e rappresenta la più lunga lunghezza d’onda che può essere guidata dalla struttura. Se 1 < 2d/  2 ossia d  < 2d si ha che solo un modo può essere guidato e la struttura si dice single-mode waveguide.

11 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis11 Si può definire anche una velocità di gruppo dei modi che rappresenta la velocità con cui viaggia l’impulso luminoso nella direzione di propagazione z. Modi diversi hanno velocità di gruppo differenti. Modi più obliqui viaggiano con una velocità di gruppo più bassa poiché sono “ritardati dal più lungo percorso a zig-zag” Modi trasversali magnetici (TM) Nei modi TM il campo magnetico associato all’onda è parallelo alla direzione x. In questo caso il campo elettrico ha componente sia nella direzione y che z.

12 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis12 La componente z è parallela agli specchi e quindi si esprime come la componente x dei modi TE. Quindi: Le componenti y del campo elettrico avranno la forma: Le condizioni al contorno di avere campo nullo sugli specchi sono assicurate dal fatto che E z (y,z) si annulla in corrispondenza degli specchi. k  y z E 

13 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis13 Se si hanno più modi guidati in una struttura, poiché ciascun modo ha costanti di propagazione diverse e velocità di gruppo diverse, il campo cambia la sua distribuzione trasversale man mano che l’onda procede. Per cui la distribuzione di intensità per un modo singolo è invariante con la propagazione, mentre la distribuzione multimodo cambia lungo l’asse di propagazione.

14 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis14 Riflessione e rifrazione n’ n k’ k’’k r’ r’’ i y z Condizione al contorno sul piano y=0 Campi devono variare nello stesso modo Stessa fase. (Cinematica) k=n  /c== =

15 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis15 Riflessione e rifrazione n’ n k’ k’’k r’ r’’ i y z Legge di Snell o della rifrazione Legge della riflessione All’interfaccia tra due diversi mezzi si verifica la riflessione e la rifrazione del raggio incidente

16 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis16 Riflessione interna totale n n’ k’ k  y z La legge di Snell implica che se il raggio proviene dal mezzo di indice di rifrazione maggiore esiste un angolo limite  c oltre il quale non vi è raggio rifratto. n>n’ r’  >r’

17 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis17 Relazioni tra le intensità dei raggi incidenti, trasmessi e riflessi Coefficienti di Fresnel Esiste un angolo di incidenza per cui non c’è raggio riflesso per polarizzazione parallela (  i +  t =  /2) ANGOLO DI BREWSTER Derivano dalla condizioni di continuità dei campi all’interfaccia. (Dinamiche) Continuità della componente tangenziale (E e H) Continuità della componente normale (D e B)

18 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis18 Coefficienti di riflessione

19 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis19 Coefficienti di Fresnel Fino all’angolo critico r j sono reali positivi o negativi.(  j =0 o  )

20 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis20 Coefficienti di Fresnel Sopra l’angolo critico  c (se esiste) assumono valori complessi complessi perché cos  t diventa immaginario

21 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis21 Materiale dielettrico ad indice di rifrazione maggiore del materiale dielettrico che lo circonda. Il principio è quello della riflessione totale alle interfacce. Lo strato guidante è detto core quello sottostante buffer e quello sopra cladding. Esistono guide d’onda planari sia simmetriche (indici di rifrazione buffer e cladding uguali) che asimmetriche. Si avrà riflessione totale se l’angolo  è minore di  = 90°-sin -1 (n 2 /n 1 ) = cos -1 (n 2 /n 1 ). Per angoli maggiori una parte della radiazione sarà persa ad ogni riflessione. La trattazione sarà simile a quanto già trovato per guide con specchi. Bisogna fare attenzione all’uso degli angoli complementari Guide d’onda planari dielectriche

22 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis22 Modi guidati Consideriamo una onda TEM monocromatica di lunghezza d’onda = 0 /n 1 che si propaga con angolo  rispetto all’asse z minore dell’angolo complementare critico  c. La velocità di fase dell’onda è c 1 =c 0 /n 1 e il numero d’onda n 1 k 0. Le componenti k x = 0, k y = n 1 k 0 sin  e k z = n 1 k 0 cos . Imponiamo la condizione di auto consistenza (un’onda si riproduce dopo due riflessioni). In questo caso si avrà: Ci sarà in aggiunta al caso degli specchi anche un fattore di fase  r dovuto alle riflessioni con l’interfaccia del dielettrico per cui: o anche Quindi anziché avere uno sfasamento di 180° alla riflessione si ha uno sfasamento di  r alla riflessione. Il fattore di fase dipende dall’angolo  e si ha: Quindi  r varia da  a 0 al variare di  da 0 a  c.

23 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis23 Riscrivendo la condizione di autoconsistenza: Si ottiene:per i modi TE Questa è una equazione trascendentale in , che ha soluzione grafica. I punti di intersezione della parte destra e sinistra sono gli angoli  m dei modi. Per  r =  (guide con specchi) le soluzioni sono i punti vuoti.

24 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis24 Gli angoli dei modi saranno tra 0 e  c, i vettori d’onda avranno componenti: Le componenti z rappresentano le costanti di propagazione dei vari modi: Poiché cos  m può assumere valori tra 1 e cos  c = n 2 /n 1 si ha che  m andrà tra n 2 k 0 e n 1 k 0. Gli angoli e le costanti di propagazione per i modi TM possono essere trovati in maniera analoga usando lo sfasamento  y dato da:

25 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis25 Numero di modi La separazione tra modi è pari a /2d. Si avranno modi per angoli tali che: sin   sin  c. Quindi il numero di modi TE è dato dal più piccolo intero più grande di sin  c /( /2d). Per cui se sin  c /( /2d) = 0.9, 1 o 1.1 si ha M =1, 2 o 2. Distribuzioni di campo Si avrà una distribuzione di campo interna alla guida ed una esterna. Quella interna è costituita da due onde TEM piane che viaggiano con angoli ±  m con l’asse z. Queste hanno la stessa ampiezza ma uno sfasamento m  nel centro della guida. L’ampiezza del campo elettrico complesso all’interno della guida sarà: con costante propagazione costante Il campo non si annulla alle interfacce. Per m alti sin  m aumenta e quindi modi più alti variano più rapidamente con y.

26 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis26 Campo esterno Il campo esterno dovrà raccordarsi alle interfacce con quello interno. Quindi varierà come exp(-j  m z). Usando l’equazione di Helmholtz: Si ottiene:con Poiché  m >n 2 k 0 per i modi guidati si ha che  m 2 >0 e quindi l’equazione è soddisfatta da funzioni esponenziali:  m è noto come coefficiente di estinzione e l’onda che si propaga esternamente si dice onda evanescente. Sostituendo si ha: All’aumentare di m  m aumenta e  m diminuisce. Quindi modi di ordine alto penetrano più in profondità negli strati esterni.

27 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis27 Per determinare le costanti di proporzionalità nelle equazioni che descrivono il campo interno e quello esterno si impone che ai bordi i campi siano uguali (y = ± d/2) e si usa la condizione di normalizzazione: Si ottengono quindi delle espressioni per u m (y) valide per ogni y. Le funzioni u m (y) sono tutte ortogonali tra loro: Un campo elettrico TE arbitrario nella guida potrà essere scritto come combinazione lineare di questi modi: con a m ampiezza del modo m-esimo.

28 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis28 La distribuzione di campo dei modi TM può essere determinata in modo simile. Considerando che la componente z del campo elettrico si comporta in modo simile alla componente x del campo elettrico per i modi TE. La distribuzione di campo per il modo TE più basso (m=0) ha forma simile a quella di un fascio gaussiano. Però nel caso di fascio guidato non si ha allargamento del fascio come avviene in aria. In una guida d’onda la tendenza della luce a diffrangere è compensata dall’azione guidante del mezzo.

29 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis29 Velocità di gruppo la velocità di gruppo è definita come v = d  /d , per cui si deve trovare la dipendenza di  (costante di propagazione) da . Partendo dalla condizione di autoconsistenza alla fine si ottiene: Per cui si ottiene una relazione di dispersione tra  e .

30 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis30 Le velocità di gruppo saranno quindi tutte tra c 1 e c 2 (che sono le velocità di fase nella parte guidante e negli strati di buffer e cladding) con c 1 < c 2. Per una frequenza fissata il modo 0 viaggia con velocità vicina a c 1, invece il modo più alto M (più obliquo) avrà velocità circa pari a c 2. Infatti una buona parte dell’energia che porta il modo M viaggia negli strati di cladding e buffer dove la velocità è c 2. Opposto a guide con specchi.

31 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis31 La velocità può essere scritta come: che a differenza delle guide con specchi: Questo indica che il raggio nella guida dielettrica viaggia un’ulteriore distanza  z in un tempo . Questo può essere pensato come una penetrazione effettiva del raggio dentro il cladding o il buffer o come uno shift laterale effettivo del raggio. L’effetto di penetrazione di un raggio che è sottoposto a riflessione totale è detto effetto Goos-Hanchen. Si può scrivere la velocità laterale come  z /  =  /  = c 1 /cos  quindi modi più obliqui (  alto) percorrono la distanza laterale ad una velocità più alta rispetto ai modi meno obliqui (m bassi). Da questo deriva il fatto che la velocità di gruppo totale dei modi più obliqui è più alta rispetto a quelli meno obliqui (m piccolo).

32 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis32 Goos-Hänchen shift

33 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis33 Guide d’onda bidimensionali Nel caso di guide d’onda bidimensionali si ha un confinamento della luce non soltanto nella direzione y ma anche nella direzione x, mentre la direzione z è sempre quella di propagazione. La più semplice schematizzazione è di considerare una guida bidimensionale con pareti a specchio. Si assume per semplicità che gli spessori siano ugali nelle due direzioni ed uguali a d. In questo caso le condizioni di autoconsistenza ci danno: La costante di propagazione  = kz si può trovare dalla relazione k x 2 + k y 2 +  2 = n 2 k 0 2 Le tre componenti del vettore d’onda hanno valori discreti e si hanno un numero di modi finito. Ciascun modo è identificato da m x e m y (invece di m come nel caso di guide planari).

34 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis34 Il numero massimo di modi nella guida bidimensionale può essere trovato contando i punti nel settore circolare del diagramma k x – k y. Se questo numero è grande si può approssimare al rapporto tra l’area del settore (  nk 0 ) 2 /4 con l’area della cella unitaria (  /d) 2 : Poiché ci sono due polarizzazioni (TE e TM) il numero di modi totali sarà 2M. Comparando con il numero di modi in una guida planare si nota che il numero di modi è notevolmente aumentato. Si ha circa il quadrato del numero di modi. Le distribuzioni di campo associate con questi modi saranno simili a quelle della guida planare solo che si avranno distribuzioni simili lungo la direzione y e lungo quella x.

35 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis35 Guida d’onda bidimensionale dielettrica Un materiale a sezione quadrata di lato d ed indice di rifrazione n 1 è ricoperto da un materiale ad indice di rifrazione n 2 (n 2 < n 1 ). Le componenti del vettore d’onda devono soddisfare la condizione con Quindi k x e k y staranno nell’area mostrata in figura. I valori di k x e k y si ottengono dalla condizione di autoconsistenza. I valori k x e k y dei modi non sono uniformemente spaziati come nel caso di guide con specchi, comunque due valori consecutivi di k lungo le due direzioni sono spaziati in media di  /d. Il numero di modi si può ottenere contando i punti nel diagramma e si ha: o con NA numerical aperture per i modi TE Approssimazione è buona per M grande. Ci saranno anche M modi TM

36 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis36 Tipi di guide d’onda canale Configurazioni

37 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis37 Eccitazione dei modi di guida La luce si propaga in forma di modi e l’ampiezza complessa del campo ottico è la sovrapposizione di tali modi con a m ampiezza, u m (y) distribuzione trasversale e  m costante di propagazione del modo m Se la luce che si tenta di inserire in guida ha una distribuzione che si accorda perfettamente con un modo della guida sarà eccitato solo quel modo. In generale la luce avrà una distribuzione arbitraria s(y) che quindi ecciterà vari modi e in modo diverso. La frazione di potenza trasferita dalla sorgente al modo m dipende Dalla similitudine tra s(y) e u m (y). Possiamo scrivere s(y) come sovrapposizione di funzioni ortogonali u m (y): con a l ampiezza del modo eccitato l che rappresenta il grado di similiratà (correlazione) tra la sorgente e la distribuzione del modo:

38 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis38 La luce può essere accoppiata con la guida direttamente focalizzando la luce su di essa (lente, obiettivo da microscopio, altre fibre,ecc.). L’accoppiamento è difficile e anche poco efficiente. In una guida multimodo possiamo considerare un approccio basato sui raggi ottici. Per avere un buon accoppiamento la luce incidente deve essere focalizzata in un angolo minore di  a. I raggi dentro la guida sono confinati ad un angolo  c = cos- 1 (n 2 /n 1 ) che corrisponde ad un angolo esterno  a. Si può inserire in guida anche direttamente la luce uscente da un dispositivo a semiconduttore o da un laser semplicemente allineando le estremità (sorgente/guida) lasciando uno spazio minimo.

39 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis39 Si può accoppiare luce dentro le guide anche usando un prisma, un reticolo di diffrazione o un’altra guida d’onda. Accoppiamento con prisma Si usa un prisma ad alto indice di rifrazione n p > n 2 posto ad una distanza d p dalla guida d’onda planare. Una onda ottica incide sul prisma in modo tale che sia in condizione di riflessione totale. L’onda incidente e riflessa formano una onda che si propaga lungo z con costante di propagazione  p =n p k 0 cos  p. Il campo elettrico trasverso si estende al di fuori del prisma e decade esponenzialmente. Se la distanza d p è sufficientemente piccola l’onda si accoppia alla guida planare con costante di propagazione  m   p. Quindi il prisma agisce per inserire luce nella guida, ma può funzionare anche per estrarre luce dalla guida. Con un reticolo di diffrazione la situazione è simile.


Scaricare ppt "LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis1 Trasmissione di segnali a lunga distanza Dispositivi integrati miniaturizzati."

Presentazioni simili


Annunci Google