La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Attivita’ sul microvertice a Torino Commissione scientifica 3, Genova 21 settembre 2009 Daniela Calvo.

Presentazioni simili

Presentazione sul tema: "Attivita’ sul microvertice a Torino Commissione scientifica 3, Genova 21 settembre 2009 Daniela Calvo."— Transcript della presentazione:

1 Attivita’ sul microvertice a Torino Commissione scientifica 3, Genova 21 settembre 2009 Daniela Calvo

2 Micro-Vertex-Detector requirements Good spatial resolution in r-phi –Momentum measurement of pions from D* decays Good spatial resolution specially in z –Vertexing, D-tagging Good time resolution –rms 6 ns (at 50 MHz clock) with 2·10 7 ann/s Triggerless readout Energy loss measurement –dE/dx for PID  Low material budget –low momentum of particles (from some hundreds of MeV/c) (<1% X 0 for each layer) Radiation hardness (~4·10 13 n 1MeV eq /cm 2 ) (half year data taking, 15 GeV/c antip-p) –Different radiation load

3 MVD layout Micro Vertex Detector 4 barrels Inner layers: hybrid pixels Outer layers: double sided strips and 6 forward disks 4 disks: hybrid pixels 2 disks: pixel and strips mixed Custom Pixel Detector : 100  m x 100  m pixel sizes; ~ 1000 FE readout chip (114x110 pixels); continuous data transmission without trigger maximum event rate per cm 2 : ~ 12.3 MHz for pbar-Au at 15 GeV/c max. chip data rate : ~ 0.8 Gb/s (40 bit/pixel) energy loss measurement: time over threshold; dynamic range:  100 fC By G. Giraudo 40 cm 30 cm

4 D. Calvo Overview Status of the activities for the pixel detector in Torino Assembly layout Electronics and cables Mechanics and cooling

5 Standard hybrid technology ASIC developed by the 130 nm CMOS technology with triggerless readout. Up to now the readout is in 250 nm CMOS technology (see LHC experiment with trigger ) THIN PIXEL SENSORS (< 150  m) realized with EPITAXIAL SILICON material (suggested by Boscardin-FBK) (At LHC: thickness of 200  m; at RD50 diodes with epitaxial material )  = 0.01÷ 0.02  ·cm d = some hundreds of  m Carbon fiber mechanical support Cooling system Carbon foam support to improve power dissipation The thinning starts from this side, reducing the substrate to tens of  m. Several processes for defining geometry and for obtaining pixel sensors are made on this side  = 3 ÷ 4 K  ·cm d = 25 ÷150  m Bump bonding readout chip silicon Cz substrate epitaxial silicon layer

6 Assembly layout

7 2-chip module ToPiX readout chips 0603 supply filter capacitors Sensor Controller chipPower cableData cable 0805 bias filter capacitor Multilayer bus structure Assembly scheme By R. wheadon

8 Keeping cables out of active region means that some modules may require two designs according to which end the cables have to be connected Layout of forward disks Possibility of daisy-chaining controllers to save on cables (where data rates allow) Controller chips serve two or three ToPiX readout chips For outer layer of barrel would need to daisy-chain two 6-chip modules (power and controller chips) to keep cables out of active region By R. wheadon

9 Electronics and cables

10 Technology LM -> DM (the HEP mainstream) LM: 6 (thin) + 2 (thick) metal layers DM: 3 (thin) + 2 (thick) + 3 (RF) metal layer –RF layer shows lower resistivity and helps power routing –RF layer gives more precise capacitance –shared bus among adjacent columns Upgrade of ToPix 25  m 100  m

11 Clock from 50 MHz to 160 MHz – time stamp bin: ~6ns – new columns and receivers to be redesigned – new simulations SEU protection: DICE cells -> triple redundance? – twice size increase in the digital part of the chip -> rescaling of the analog part Upgrade of ToPix

12 Upgrade of the analog part of ToPix - I Adaptation for the 160MHz In order to keep the same clock_cylces to injected_charge ratio as ToPix2 the discharging current value has to be proportionally increased from 5 nA to 16 nA. Qin Clock frequency ToT Clock cycles Clk_cy /Qin 30 fC50 MHz6.094 ns fC160 MHz2.000 ns Simulation result of analog output signal with the 2 different clock values

13 Upgrade of the analog part of ToPix - II Compact leakage compensation stage Layout compatible with the DM process ToT (  s) Leakage current (nA) ToT variation due to the leakage current Simulation: Q in = 80fC dToT/dIleak=-1.53ns/nA Baseline variation of 0.6mV when the leakage current increases from 10nA to 100nA. (~2mV)

14 Equivalent fluence values on the diodes : 5.13x10 13, 1.54x10 14, 5.13x10 14 n(1MeV eq )/cm 2 corresponding to 1, 3 and 10 years of PANDA lifetime The radiation damage constant is  =  J  = 7.6(  0.3)x A/cm for all diodes. Lekage current < 50 nA/pixel (100  mx100  m size, 100  m thick) Results from radiation damage test of epi-diodes: the radiation damage constant

15 R&D – electronics and connections Readout chip Detector Module controller Optical transceiver cable to counting room/daq Development in progress with prototypesStudy of the architecture in progress ( test of high frequency cable) Development in progress in other collaboration PCB -BUS First prototypes

16 Preliminary bus scheme By R. Wheadon

17 Cable prototype – testing board layout 1 m differential cable Al Kapton (SU8) connectors pads

18 Cable prototype –preliminary simulation By Paolo De Remigis

19 Updates from pixel cooling Responsible: S. Coli INFN - Torino

20 Results from test New prototype done  12 resistors on 4 rows, 2 rows x side  “disk body” by POCO-HTC foam  2 tubes embedded (ø e 2mm, ø i 1.84mm) TEMPERATURE PROFILE COOLING TEST RESULTS –IR IMAGES

21 Results from simulations 1 W/cm ℓ/min water 18.5 o C POCO-HTC K (75, 245, 245) W/mK FEM RESULTS INPUT DATA

22 Cooling system for disks Disk split in two halves along the mid-plane Material for heat dissipation: foam POCO-HTC Embedded cooling capillary between the two halves All elements grued with thermal glue Problem: large glueing area -> test have to be performed

23 Results with different material for cooling POCO FOAM Density: 0.55 g/cm3 POCO HTC Density: 09 g/cm3 Pyrolytic Graphite Density: 2.2 g/cm3 Total power: 90 W Coolant Temperature: 20°C Max. Reached Temperature Poco Foam: 23°C POCO HTC: 21.7°C PG: 23.3 °C

24 Cooling pipe scheme 1 tube Ø 6 2tubes Ø 8 2x Ø 4 1 manifold 2  1 6x Ø 4 1 manifold 6  1 6x Ø 4 1 manifold 6  1 4 manifolds 4  1 2 manifolds 4  1 6 tubes Ø 6 2x Ø 4 6x Ø 4 1 manifold 6  1 1 manifold 2  1 1 manifold 6  1 1 tube Ø 6 2tubes Ø 8 By B. Giraudo

25 Updates from MVD Mechanics Responsible: G. Giraudo INFN - Torino

26 MVD layout >250 mm Ø 20.4 mm

27 Fittings for cooling pipes Ancillary parts as special fittings and curves can be common parts made from Ryton R by injection mould 7 mm diameter 16 mm length 3 bar maximum pressure

28 Mechanics details ~1,3 mm 25 mm (20 mm)

29 Primary target Responsible: F. Iazzi Politecnico and INFN - Torino

30 Primary target The target will be built through the following steps: Step 1 The target production starts from a disk shaped basis of Cu, (sizes:14mm diameter and 0.5 mm thickness), on which a carbon layer 20  m thick will be deposited Remarks: the density of the layer is not the graphite density, but close to that: it will be measured (we will use the back-scattering technique) the thickness of the layer can be chosen without major constraints in the range  m and will be measured by optical techniques with good precision (better than 5%), after the deposition Step 2 After the deposition the carbon layer will be masked along the wires and the rest of the carbon will be wet-etched and taken away. The result will be a Cu disk having 3 wires of about 14 mm x 20 x 20  m 2 glued on. The distances between the 3 wires could be 3.5 mm in order to avoid the beam spot overlapping on 2 wires Step 3 (see fig. 2, where the ring is in violet, wires in black/white) The Cu disk will be wet etched and taken away unless a ring (external diameter 14 mm, internal 12 mm), which will be previously masked. The result will be a ring with 3 C wires like a guitar. Step 4 The Cu ring with wires will be inserted inside a Al local frame, whose aim will be to manage the plugging of the target into the beam pipe side view Al Cu C 14 frontal view

31 Next step and conclusions

32 Richieste capitolo Missioni Interne

33 Richieste capitolo Missioni Estere MISSIONI ESTERE: Partecipazione ai 4 meetings di collaborazione con cariche ufficiali: 4 pp al Coordination Board: (Calvo, Filippi, Marcello, Iazzi) e 1 pp al Technical Board (Calvo) (i meeting generali sono programmati a 5 gg). 5gg+viaggio x 4 meetings x 5pp: 25 keuro Partecipazione ai meetings del microvertice e della meccanica dell’esperimento con presenza del coordinatore meccanica mvd (G. Giraudo) e responsabile cooling ( S. Coli) e partecipanti al FEE tag (D. Calvo e A. Rivetti). 3gg +viaggio x 7 meeting x 3 pp: 13 keuro settimana di lavoro a Julich per microelettronico con sviluppo logica di controllo in collaborazione. 5gg+viaggio x 1 p: 1.5 Keuro lavoro di integrazione della meccanica e del cooling dei pixel e delle strips intorno alla beam pipe e targhetta, con il routing (1 sett. a Julich, 1 sett.a Bonn, 1 GSI). 5gg+viaggio x 2 pp x 3 incontri: 5 Keuro contatti scientifici del responsabile locale mvd con il responsabile mvd a Bonn, per scrittura TDR. 4 gg+viaggio x5 contatti x 1p: 3 Keuro 2 Physics meetings ( Iazzi e’ partecipante). 2gg+viaggio x 2 contatti x 1 p:1.5 keuromeetings di aggiornamento software di una settimana per 2 persone presso GSI. 5 gg+viaggio x 1 corso x 2 pp: 3 keuro dottorando al GSI per lavoro sulle simulazioni, circa 10 giorni: 1.5 keuro contatto con Fraunofher Institute per bump bonding dei sensori. 2gg+viaggio x 1p: 1.5 keuro contatti scientifici con gruppi europei (fisica e tecnologia). 3 gg+viaggio x 3 contatti x 2 pp: 3 keuro 1 settimana di progettazione meccanica della regione ipernucleare- beam pipe a Julich. 5 gg+viaggio x1 pp: 1 Keuro Meeting per sviluppo targhetta e beam pipe per la parte ipenucleare. 2gg+viaggio x 2 contatti x 1 p:1.5 keuro partecipazione a due congressi internazionali per presentare i risultati del mvd: 5 gg+viaggio x 1p x 2 congressi: 3.5 keuro test TID con X al CERN per ToPix3 ( sj alla disp. sorgente e chip). 7gg+viaggio x 1 misura x 2 pp: 2 keuro test con protoni (circa 23 GeV) per studiare i sensori epi (sj all’ass.fascio) con spessore fino a 100 micron. 7gg+viaggio x 1 misura x 4pp, compresa installazione: 4 keuro test a Bonn (elsa) di radiation lenght di carbon foam ( sj. ass fascio): 5gg+viaggio x 1 misura x 2 pp: 2.5 keuro Totale M.E.: 62.5 kEuro kEuro sj

34 Richieste capitolo CONSUMO sj

35 Richieste capitolo INVENTARIO

36 f.t.e. nel 2010 a Torino Calvo Daniela: 80% Busso Luigi: 30% De Mori Francesca: 20% Filippi Alessandra: 30% Marcello Simonetta:70% Kugathasan Thanushan: 100% Szymanska Katarzyna: 100% Iazzi Felice: 100% De Remigis Paolo (elettronica): 60% Mazza Giovanni (microelettronica):30% Rivetti Angelo (microelettronica):20% Wheadon Richard (sensori/elettronica):20% Coli Silvia (meccanica/tecnologia):70% Giraudo Giuseppe (meccanica/tecnologia):70% = 8fte E personale tecnico INFN-Torino Laboratorio di Elettronica e Laboratorio tecnologico/Officina meccanica

Download ppt "Attivita’ sul microvertice a Torino Commissione scientifica 3, Genova 21 settembre 2009 Daniela Calvo."

Presentazioni simili

Annunci Google