La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Commissione 1, Roma, 3 Aprile 2007M. Villa Stato del LUCID M. Villa per il LUCID group Storia recente Nuova strategia rivelatore Tests su fascio Tests.

Presentazioni simili


Presentazione sul tema: "Commissione 1, Roma, 3 Aprile 2007M. Villa Stato del LUCID M. Villa per il LUCID group Storia recente Nuova strategia rivelatore Tests su fascio Tests."— Transcript della presentazione:

1 Commissione 1, Roma, 3 Aprile 2007M. Villa Stato del LUCID M. Villa per il LUCID group Storia recente Nuova strategia rivelatore Tests su fascio Tests di irraggiamento Elettronica Meccanica Simulazione Costi LUminosity measurement using Cerenkov Integrating Detector

2 Commissione 1, Roma, 3 Aprile 2007M. Villa Gruppi partecipanti University of Alberta (Detector mechanics, gas system, HV, LV, optical-fibre cables, simulation, installation) – J. L. Pinfold, R. Soluk, J. Soukup (chief mechanical engineer), Y. Yao. University of Bologna (Detector mechanics, DAQ, readout electronics, HV, LV, trigger, simulation, radiation testing, slow controls, installation) – A. Bertin, M. Bruschi, D. Caforio, R. Di Sipio, S. De Castro, I. D’Antone (elec. chief engineer), L. Fabbri, P. Faccioli, B. Giacobbe, I. Massa, M. Piccinini, M. Poli, C. Sbarra, A. Sbrizzi, N. Semprini-Cesari, R. Spighi, M. Villa, A. Vitale, A. Zoccoli CERN (Simulation, calibration) – S. Ask, P. Grafstrom, University of Lund/CERN (Integration, electronics) – V. Hedberg, B. Lundberg University of Alberta (Detector mechanics, gas system, HV, LV, optical-fibre cables, simulation, installation) – J. L. Pinfold, R. Soluk, J. Soukup (chief mechanical engineer), Y. Yao. University of Bologna (Detector mechanics, DAQ, readout electronics, HV, LV, trigger, simulation, radiation testing, slow controls, installation) – A. Bertin, M. Bruschi, D. Caforio, R. Di Sipio, S. De Castro, I. D’Antone (elec. chief engineer), L. Fabbri, P. Faccioli, B. Giacobbe, I. Massa, M. Piccinini, M. Poli, C. Sbarra, A. Sbrizzi, N. Semprini-Cesari, R. Spighi, M. Villa, A. Vitale, A. Zoccoli CERN (Simulation, calibration) – S. Ask, P. Grafstrom, University of Lund/CERN (Integration, electronics) – V. Hedberg, B. Lundberg

3 Commissione 1, Roma, 3 Aprile 2007M. Villa Storia recente Feb. 2004: LUCID - part of the “ATLAS Luminosity measurement Letter of Intent” Jul. 2005: Bologna group joins LUCID working group Nov. 2005: 1st test beam - yield 5.5 bar Aug. 2006: 2nd test beam (better alignment, correction from silicon telescope, bigger exit aperture for WC, etc) –Light yield ~14 bar with WC to MaPMT –Light yield ~60 bar with WC to PMT. Dec. 2006: 3rd test beam - test of electronics & DAQ Jan. 2007: ATLAS Review of Phase 1 (low lumi) LUCID detector - for proposed installation in August 2007 Feb. 2007: LUCID becames an ATLAS Project

4 Commissione 1, Roma, 3 Aprile 2007M. Villa Attività di Bologna  Development of the DAQ/TRIGGER/Slow control electronics  Participation in the Test Desy (Aug 06, Dec 06) and data analysis  Monte Carlo: development and optimization of the code (to reproduce the test beam results). Simulation of the backgrounds.  Optical test on benches to check the detector performances and tune the MC  Radiation hardness studies  Detector design, mechanical construction and installation

5 Commissione 1, Roma, 3 Aprile 2007M. Villa Funzionamento Un gruppo di tubi di alluminio internamente riflettente e riempito di gas C4F10 funziona come rivelatore Cherenkov La luce Cherenkov, prodotta da particelle cariche coassiali al tubo, è emessa (tipicamente) con un angolo di 3° dall’asse e fa 3 riflessioni prima di arrivare in fondo nella zona di raccolta Non ci sono fluttuazioni di landau: Il rivelatore ha una buona risoluzione temporale (2-3 ns). E’ possibile studiare BX singoli.

6 Commissione 1, Roma, 3 Aprile 2007M. Villa Funzionamento Scopo del LUCID è di contare il numero di particelle che incidono sul rivelatore, provenienti dalla zona dell’interazione primaria e usare questa informazione per una misura di luminosità. Alta accettanza  forward detector. Il rivelatore è intrinsecamente rad-hard e leggero; occorre valutare la resistenza alla radiazione degli elementi di lettura della luce. Esperienza in CDF: Opzioni:

7 Commissione 1, Roma, 3 Aprile 2007M. Villa LUCID location Pseudorapidity coverage 5.6< |  <6.0 Radiator C 4 F x1.5 m polished Al tubes (D=1.5cm) 2 bundles of projective Cerenkov tubes around the beam pipe at ~17 m from the interaction point on each side Beam pipe

8 Commissione 1, Roma, 3 Aprile 2007M. Villa LUCID Review 29/01/07 The LUCID REVIEW

9 Commissione 1, Roma, 3 Aprile 2007M. Villa New strategy PHASE 1 - Low lumi L < ~ cm -2 s -1 ends 2009 Dominating sys for many studies Final goal ~ 4-5%+  pp (CDF:~4% ) PHASE 2 – High lumi L ~ cm -2 s -1 after 2009 Final goal ~ 2-3% +  pp

10 Commissione 1, Roma, 3 Aprile 2007M. Villa Outcome of the Review: Reviewers: progetto consigliato per l’approvazione Goal principale: installare per luglio Iniziare subito gli ordini (PMT – 4 mesi) Iniziare subito la meccanica Invito formale per una partecipazione di Bologna sulla meccanica 32 PMT nella regione ad alta radiazione+ 2 MAPMT = circa 160 canali di R.O. Punti critici: Durata PMT sotto irraggiamento Effetto dei fotoni cherenkov prodotti nella finestra di quarzo del PMT

11 Commissione 1, Roma, 3 Aprile 2007M. Villa Detector Design

12 Commissione 1, Roma, 3 Aprile 2007M. Villa Meccanica Attività a Bologna: progettazione vessel

13 Commissione 1, Roma, 3 Aprile 2007M. Villa Testbeam results

14 Commissione 1, Roma, 3 Aprile 2007M. Villa Radiation Hardness

15 Commissione 1, Roma, 3 Aprile 2007M. Villa Gain variations

16 Commissione 1, Roma, 3 Aprile 2007M. Villa Elettronics P P D D

17 Commissione 1, Roma, 3 Aprile 2007M. Villa Simulations EVENT GENERATOR Simulation of hard and soft pp interactions PHOJET 1.12 ATLAS Simulation of the whole detector, except for an empty volume to be filled with LUCID GCALOR LUCID Simulation of the LUCID detector in the available Volume GEANT 4.7.1

18 Commissione 1, Roma, 3 Aprile 2007M. Villa Simulations SIDE particle FRONT particles LUCID volume Beam pipe LUCID Y Z Primary Distance from the IP mm Cherenkov tube SIDE secondaries FRONT secondaries Cherenkov tube Primary particles are mainly pions front particles and side secondary particles are mainly electrons GCALOR provides particle momenta at the LUCID external surface

19 Commissione 1, Roma, 3 Aprile 2007M. Villa Simulation results Threshold cut: total number of p.e. larger than 50 (“tube hit”). The signal above threshold consists in large part of “FRONT particles”. Cherenkov photons from PMT window Cherenkov photons from gas + PMT LUMINOSITY: First method – Hit counting Second method – Track counting

20 Commissione 1, Roma, 3 Aprile 2007M. Villa Hit counting

21 Commissione 1, Roma, 3 Aprile 2007M. Villa Installation time schedule

22 Commissione 1, Roma, 3 Aprile 2007M. Villa Detector costs

23 Commissione 1, Roma, 3 Aprile 2007M. Villa Additional requests  More involvement means more costs:  Costuzione apparati+15 k€  Consumo+15 k€  Prototipo vessel + acquisti vari (elettronica, ecc…)  Trasferte estero(da discutere insieme ad altre richieste)  Richiesta acquisto PMT tramite Hamamatsu-Italia:  Richiesta di sblocco di 30 k€ del S-J Milano e assegnazione a Bologna (acquisto PMT)  30 k€ di fondi MOF-A coperti dal CERN x Milano  Total Gain/Loss: 0 € (x Bologna, x Milano)  (Vertici INFN d’accordo)

24 Commissione 1, Roma, 3 Aprile 2007M. Villa Additional information  More involvement means more responsability: Marco Bruschi (INFN BO) è il nuovo Project Leader del LUCID Vincent Hedberg (CERN) è il Technical Coordinator del LUCID

25 Commissione 1, Roma, 3 Aprile 2007M. Villa Conclusions Activity of the group focused on the installation of LUCID for July 07 (phase I) Very tight schedule. Minimal goal: install 2 detector ends with 32 tubes readout directly by PMT. Everything else can be delayed (electronics, final DAQ, …) Two critical areas: PMT procurements (first delivery 27 april) and tube/vessel machining (begin of may) More involvement of Bologna in the mechanics (mainly vessel)

26 Commissione 1, Roma, 3 Aprile 2007M. Villa BACKUPS

27 Commissione 1, Roma, 3 Aprile 2007M. Villa The FED CARDS PMF: HV Divider Signal Routing MAROC chip MAPMT FED PMT MOTHER CARD PMT DAUGHTER CARDS InOut PMT FED Amplifier+ Diff. Line Drivers MAROC (ROMAN POTS): 4 SUM OVER 16 CHANNELS (ANALOG OUT) 64 THR. DISCRIMINATOR (DIGITAL OUT/GOL LINKS) MRO

28 Commissione 1, Roma, 3 Aprile 2007M. Villa stru 1 stru 2 stru 16 GOL RX LVDS S/P LVDS 1 (to trig. unit) LVDS 2 (to trig. unit) LVDS 3 (to trig. unit) LVDS 4 (to trig. unit) stru 2 TTCRQ i.f. opt. lnk from TTCEX VME P1 VME I.F DPRAM CTRL LOGIC 6 Bytes EVENT BUFFER s-LINK to ROS from CTRL LOGIC 160 MB/s s-LINK Busy LUCID ROD CARD (2+2units ) – VME 9U Analog_In 1 Analog_In 2 Analog_In 16 GOL_In 1 GOL_In 2 GOL_In 10 ~200 Bytes/ev

29 Commissione 1, Roma, 3 Aprile 2007M. Villa Single Tube Readout Unit 20 ns int 5 ns reset 25 ns time LHC Clock LHC Int. Time ADC GATE to the trigger unit Fan Out GI + ADC Multiplicity per Tube LUT TUBE LUT (1 MB) 3 #1 #16 GOL LINK 1/4 data from the MRO DIFF. ANALOG INPUT (FROM FED) STRU CFD (Prog. Thr +NR) ADC GATE RAW DATA TO READOUT per STRU  ~ 6 Bytes/BC Progr. GATE & DEL LHC Clock Note: the dashed components are used only for the MAPMT readout scheme

30 Commissione 1, Roma, 3 Aprile 2007M. Villa Signal Buffer TTCRQ i.f. opt. lnk from TTCEX VME P1 VME I.F CTRL LOGIC s-LINK to ROS 160 MB/s s-LINK Busy LUCID TRIGGER CARD (1 unit ) – VME 9U Detector1Detector1 Detector2Detector2 LVDS 1 LVDS 2 Signal Buffer FPGA based TRIGGER PROCESSING UNIT 5 ser. Inp 60 bit/BC 5 ser. Inp 60 bit/BC to the L1 trigger ~40 Bytes/ev FPGA: Algorithm Flexibility LVDS 3 LVDS 4 LVDS 5 LVDS 1 LVDS 2 LVDS 3 LVDS 4 LVDS 5 ONLINE LUMINOSITY SCALERS

31 Commissione 1, Roma, 3 Aprile 2007M. Villa The prototype PMT FED Test Board MAPMT PMT Inputs MAPMT HV ANALOG SIGNAL Outputs (18x4) x10 x5 2ch Preamp+Driver PMT Daughter Card Mother Card

32 Commissione 1, Roma, 3 Aprile 2007M. Villa The prototype TX-RX System TX system: PMT Mother Card + 36 Daughter Cards x2÷4 PZ adj Gain adj DEC. 06 Test DAQ 7 VME RX cards SBC CORBO QDC ADC SCALER ATLAS TDAQ RX system: VME RX card 8 channels PZ adj Gain adj

33 Commissione 1, Roma, 3 Aprile 2007M. Villa Signal Characteristics PMT: R2496 Cable length=100 m Source: Led pulses The pole-zero correction performed by the RX card to compensate for cable losses works properly Cable length=100 m Source: Pulser

34 Commissione 1, Roma, 3 Aprile 2007M. Villa LED Calibration System - II PULSER Amplitude: ~ 4 V (variable in 10 mV steps) Duration: ~ 20 ns Trigger Output (to the DAQ trigger logic) Led amplitude adjusted to see the single photoelectron signal LED CARD PMT Optical Fiber LUCID TUBE

35 Commissione 1, Roma, 3 Aprile 2007M. Villa LUCID position MBTS TILE Front face of LUCID end is ~17m from the IP. Projective geometry. Acceptance covered 5.4 <|η|< 6.1 LUCID region 6-7 Mrad/year at cm -2 s -1

36 Commissione 1, Roma, 3 Aprile 2007M. Villa Richieste finanziarie 2007 Gruppo BO-Lumi:16.6 FTE Tecnol.=17.5 FTE Missioni interne: - metabolismo17.5 k€ Missioni estero: - metabolismo (17.5 FTE x 1.5MU x 4.4k€)115.5 k€ - C&I(6 mesi x 3 FTE x 4.4 k€) 79.2 k€ - Presa dati (3mesi x 2FTE x 4.4 k€) 26.4 k€ Consumo: - metabolismo 26.0 k€ Inventario: - 2 postazioni di lavoro 4.0 k€ Costruzioni apparato: - (vedi trasparenza successiva) 45.0 k€

37 Commissione 1, Roma, 3 Aprile 2007M. Villa Richieste costr. Apparati 2007

38 Commissione 1, Roma, 3 Aprile 2007M. Villa LUCID: electronics cost phase I Bo

39 Commissione 1, Roma, 3 Aprile 2007M. Villa Comments  The number of PMT and MAPMT includes spares.  Bologna will cover the costs (INFN funding) of the electronics marked on the table (budget ~70k€)  The MAPMT FED, the VME-TX and the CFD cards have been already produced and paid in Bologna  HV system can be staged in the first phase. We plan to use only 1 supplier + 2 boards. One of the boards has been already bought in Bologna.

40 Commissione 1, Roma, 3 Aprile 2007M. Villa LUCID: mechanics costs phase I Gas system includes the cost of the gas for one year.

41 Commissione 1, Roma, 3 Aprile 2007M. Villa Dec 06 test beam During the December 2006 Test Beam we took data using the last version of the ATLAS TDAQ ( TDAQ )

42 Commissione 1, Roma, 3 Aprile 2007M. Villa Goals in Phase 1 Lumi dominating errors for many studies (Higgs, SUSY) even at  L = 5% the final goal ~ 2-3% (~6-7% at CDF) PHASE 1 - Low lumi running L < ~ cm -2 s -1 ends 2009 –Between 1 & 5 interactions/BC events (stage 1 & 3 of schedule) –Between 1 & 9 interactions/BC (stage 2 of schedule) PHASE 1 LUCID, a dedicated lumi monitor that will provide a relative lumi measurement across the whole range - capable of “following bunches”. Calibration in PHASE-1 –Initially, use LHC Machine Parameters (Precision: ~10%) –Mid-term use physics, W/Z &  /ee counting (Precision: ~5-10%) –Into PHASE 2 - late 2009 to early 2010, Roman Pot (ALFA) measurement (Precision: ~2-3%) LUCID would provide an online beam condition monitor to LHC control Also we can gain experience with beam backgrounds for PHASE 2 Lumi dominating errors for many studies (Higgs, SUSY) even at  L = 5% the final goal ~ 2-3% (~6-7% at CDF) PHASE 1 - Low lumi running L < ~ cm -2 s -1 ends 2009 –Between 1 & 5 interactions/BC events (stage 1 & 3 of schedule) –Between 1 & 9 interactions/BC (stage 2 of schedule) PHASE 1 LUCID, a dedicated lumi monitor that will provide a relative lumi measurement across the whole range - capable of “following bunches”. Calibration in PHASE-1 –Initially, use LHC Machine Parameters (Precision: ~10%) –Mid-term use physics, W/Z &  /ee counting (Precision: ~5-10%) –Into PHASE 2 - late 2009 to early 2010, Roman Pot (ALFA) measurement (Precision: ~2-3%) LUCID would provide an online beam condition monitor to LHC control Also we can gain experience with beam backgrounds for PHASE 2

43 Commissione 1, Roma, 3 Aprile 2007M. Villa Reminder: Required Luminosity Precision Luminosity dominating errors for many studies Even at  L = 5% Final Goal ~ 2-3% Including Calibration by Roman Pot Measurement The dominant uncertainty is from Luminosity: 10% (open symbols), 5% (solid symbols). (ATLAS-TDR-15, May 1999) Higgs coupling tan  Error dominated by luminosity (ATLAS Physics TDR )

44 Commissione 1, Roma, 3 Aprile 2007M. Villa Reminder: Determine a Cross Section Acceptance Sum Over Valid dt Instant. Luminosity EfficiencyTDAQ Live Time Trigger Pre-Scale Failures and Losses Time Interval Luminosity Blocks (LB) define time intervals of data taking

45 Commissione 1, Roma, 3 Aprile 2007M. Villa Online vs Offline Luminosity Online Beam/Data-taking Monitoring –Relative Luminosity is most important –Provide Instantaneous Luminosity Average over all BCIDs Individual BCIDs –Delivered integrated luminosity (i.e. no dead-time etc) Luminosity decrease during LB (<10min) should give less than 1% uncertainty on the instantaneous luminosity within the LB –Luminosity for each BCID measured once per LB should be sufficient Offline Integrated lum. for Analysis –Corrections from offline analysis –Corrected for high or low priority dead-time Absolute lum. uncertainty depend on the precision of the calibration method Desired Absolute Precision: ~2-5% (As good as possible) (Tevatron have 6-7% Now!)

46 Commissione 1, Roma, 3 Aprile 2007M. Villa Requirements from the Analysis Dead-Time –Introduced only by CTP (LVL1) –Two kinds, high and low priority –Monitored by CTP per LB Pre-Scales –Introduced at LVL1, LVL2 and EF –Monitored per LB Failure/Quality Information –Monitored per LB Meta-Data Lum. TF Recommendations (relevant here) Use LB to synch. Information –Duration O(min), tuned by online/offline operational constraints Luminosity system used for integrated luminosity should be read-out both with and independent of ATLAS TDAQ –For dead-time determination –Using both high and low priority dead-time Luminosity determined separately for each BCID –For Dead-time determination –Required by certain methods Luminosity systems should be notified about the LB transition for local synchronization Start/End time of LB recorded –LB can be identified both by LB number and time interval

47 Commissione 1, Roma, 3 Aprile 2007M. Villa Reminder: Relevant Definitions Bunch Luminosity: Varies between BCIDs “Constant” within a LB LHC 40 MHz Beam:  3564 possible bunch crossings (BC) with BCID =  Only 2808 BC will be filled due to injection etc. (e.g. 89um long-gap) Observables:  Time structure of luminosity reflect BC structure of beam  Instantaneous lum. corresponds to average rate from a set of BCs  The BC will in practice imply discrete luminosity quanta  Bunch Luminosity = Integrated luminosity of one specific BC

48 Commissione 1, Roma, 3 Aprile 2007M. Villa Muon Background from the Machine Lum10 27 cm -2 s cm -2 s - 1 Int. Rate80 Hz40 MHz LUCID single side rate 16 Hz40MHz Single muon bkg. Rate 0.06 Hz40 Hz LUCID coinc. rate 4Hz40MHz Coinc. Muon Bkg. Rate Hz10 -5 Hz Very conservative assumptions: No energy cut All muons survive through TAS + ATLAS (see charged hadron discussion) Muon rate entering the ATLAS cavern, i.e. before the TAS etc, at L = LUCID coverage (phase 1) Muons / s (and bin) Radius (cm)

49 Commissione 1, Roma, 3 Aprile 2007M. Villa Charged Hadron Background


Scaricare ppt "Commissione 1, Roma, 3 Aprile 2007M. Villa Stato del LUCID M. Villa per il LUCID group Storia recente Nuova strategia rivelatore Tests su fascio Tests."

Presentazioni simili


Annunci Google