La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Radiazioni Ionizzanti

Presentazioni simili


Presentazione sul tema: "Radiazioni Ionizzanti"— Transcript della presentazione:

1 Radiazioni Ionizzanti
Generalità

2 Radiazioni Ionizzanti
Radiazione Con il termine “radiazione” si intende descrivere una forma di trasferimento dell’energia nello spazio. Radiazioni Ionizzanti Radiazioni capaci di causare ionizzazione negli atomi del mezzo che attraversano

3 Ionizzazione La ionizzazione degli atomi della materia irradiata è legata alla liberazione degli elettroni orbitali dai legami energetici con i rispettivi nuclei; le radiazioni ionizzanti devono quindi possedere energia sufficiente ad impartire agli elettroni del materiale irradiato energia cinetica sufficiente a metterli in movimento come elettroni veloci (ionizzazione primaria). Gli elettroni liberati hanno sufficiente energia cinetica per produrre, a loro volta, altre ionizzazioni (ionizzazione secondaria) perdendo progressivamente l’eccesso di energia cinetica fino a ritornare ad uno stato di quiescenza.

4 Radiazioni Ionizzanti
In base alla natura Elettromagnetiche: raggi x, raggi γ Corpuscolate: raggi α, protoni, neutroni. In base al meccanismo di ionizzazione Direttamente ionizzanti Indirettamente ionizzanti

5 Radiazioni Corpuscolate:
Particelle atomiche o subatomiche (alfa, elettroni e protoni) che trasportano energia in forma di energia cinetica di una massa in movimento. Radiazioni Elettromagnetiche L’energia è trasportata per mezzo di onde e.m. che percorrono lo spazio alla velocità della luce.

6 Isotopi Vengono definiti isotopi gli atomi con lo stesso numero di protoni ma diverso numero di neutroni. Gli isotopi possono essere stabili o instabili (radioattivi), in ogni caso, essendo forme dello stesso elemento, posseggono identiche caratteristiche chimiche. La stabilità dipende dal rapporto tra protoni e neutroni del nucleo dell’atomo. Gli isotopi instabili riacquistano stabilità mediante l’emissione di una particella carica dal nucleo (radioattività o decadimento radioattivo)

7 Z caratterizza l’elemento A caratterizza l’isotopo
Il nucleo atomico Modello del nucleo a nucleoni Dato un certo elemento, numero atomico Z Nucleo formato da Z protoni + N neutroni A = Z + N numero di massa Z caratterizza l’elemento A caratterizza l’isotopo Massa del neutrone circa 0.1% maggiore della massa del protone

8 Unità di misura 1 eV = energia acquistata da un elettrone nell’attraversare la differenza di potenziale di 1 Volt 1 eV = 1.6 x J 1 keV = 103 eV 1 MeV = 106 eV

9 Radiazione elettro-magnetica
Onda elettromagnetica piana: T periodo (s) n frequenza (Hz) n n = 1/T lunghezza d’onda (m) c velocità di propagazione (m/s) nel vuoto: c = 3 x 108 m/s l n = c

10 Spettro delle radiazioni elettromagnetiche

11 Assorbimento di energia
Assorbimento di un fotone Ec ionizzazione e = hn e = Wi + Ec Wi Assorbimento di un fotone Wi e = hn Wj eccitazione = Wi – Wj

12 Gli effetti biologici dipendono da...

13 Radiazioni naturali e artificiali

14 Interazione delle R.I. con la materia
Le particelle alfa, attraversando la materia con massa elevata e doppia carica elettrica positiva esercitano lungo il loro percorso una rilevante forza di attrazione sugli elettroni orbitali degli atomi. Questa attrazione può strappare via uno o più di questi elettroni (ionizzazione) con perdita di parte dell’energia della particella. A causa della loro massa le particelle alfa si muovono in modo relativamente lento e cedono tutta la loro energia in tragitti brevi, densi e rettilinei (radiazioni ad alto let). Percorso massimo di una particella alfa: Pochi cm in aria Pochi m nel tessuto vivente (non superano lo strato corneo dell’epidermide)

15 Interazione delle particelle alfa con la materia
La radiazione alfa non rappresenta un rischio per contaminazione esterna (tutta la radiazione è assorbita dallo strato corneo) L’inalazione e l’ingestione di un alfa-emettitore rappresenta un serio pericolo (es. gas radon)

16 Interazione delle radiazioni elettromagnetiche con la materia
Le radiazioni di natura elettromagnetica (raggi x, raggi gamma) hanno basso Let e bassa intensità di ionizzazione per cui penetrano profondamente nella materia vivente. La loro pericolosità è sia per irradiazione esterna, sia per contaminazione interna.

17 Interazione delle R.I. con la materia
Le particelle beta, a causa della loro piccola massa e della carica elettrica negativa, vengono continuamente deviate nel loro percorso dagli elettroni degli atomi che attraversano. Il percorso delle particelle beta è tortuoso all’interno della materia.

18 Interazione delle particelle beta con la materia
Le particelle beta hanno un comportamento intermedio tra le alfa e le elettromagnetiche, penetrando per una lunghezza intermedia all’interno della materia. Risultano pericolose per contaminazione esterna sulla cute (radiodermite) ed interna o incorporazione in organi specifici (es. radioiodio per la tiroide)

19 Principali grandezze ed unità dosimetriche

20 Energia media assorbita nell’unità di massa
Dose assorbita (D) Energia media assorbita nell’unità di massa D = E/m D = dose assorbita E = energia ceduta dalla radiazione m = massa L’unità di misura della dose assorbita è il Gray (Gy) 1 Gray = 1 Joule/Kg = 100 rad Ai fini radoprotezionistici la dose assorbita (D) indica la dose media in un tessuto o in un organo

21 1 Sievert = 1 Joule/Kg = 100 rem
Dose equivalente (H) Dose assorbita media in un tessuto od in un organo T ponderata in base al tipo ed alla qualità della radiazione Ht = D x Wr D = dose assorbita Wr = fattore di ponderazione della radiazione* è funzione dell’efficacia biologica relativa (EBR) a produrre effetti di tipo stocastico L’unità di misura della dose assorbita è il Sievert (Sv) 1 Sievert = 1 Joule/Kg = 100 rem

22 Fattori di peso per le radiazioni

23 Somma delle dosi equivalenti ponderate nei tessuti e negli organi
Dose efficace (E) Somma delle dosi equivalenti ponderate nei tessuti e negli organi E = Ht x Wt Ht = dose equivalente media all’organo o tessuto (t) Wt = fattore di ponderazione per l’organo o tessuto (t) È funzione del contributo relativo dell’organo al detrimento complessivo dell’organismo L’unità di misura della dose efficace è il Sievert (Sv)

24 Fattori di peso per organi e tessuti
La sommatoria di Wt è unitaria

25 Dose Impegnata Dose ricevuta da un organo o da un tessuto in un determinato periodo di tempo, in seguito all’introduzione di radionuclidi Può essere riferita ad un organo o tessuto (dose equivalente impegnata) o al corpo intero (dose efficace impegnata) E’ determinata dal tipo di radiazione emessa e dal tempo di dimezzamento (T1/2 effettivo) di uno specifico isotopo.

26 Radiazioni Ionizzanti Aspetti sanitari

27 Effetti biologici delle radiazioni
LE RADIAZIONI IONIZZANTI RAPPRESENTANO IL FATTORE DI RISCHIO MAGGIORMENTE STUDIATO IN AMBITO DI RAPPORTO ESPOSIZIONE-EFFETTO. LA MAGGIOR PARTE DELLE EVIDENZE SONO BASATE SU ESPOSIZIONI NEI: SOPRAVVISSUTI DI HIROSHIMA E NAGASAKY PAZIENTI SOTTOPOSTI A TRATTAMENTI DIAGNOSTICI E TERAPEUTICI ESPOSIZIONI LAVORATIVE (MINATORI) INCIDENTI NUCLEARI

28 Effetti biologici delle radiazioni
Danni a carico delle membrane cellulari Danni a carico degli organuli citoplasmatici (mitocondri, lisosomi) Danni a carico delle macromolecole cellulari Danni a carico del DNA diretti indiretti (mediati da radicali liberi)

29 Effetti biologici delle radiazioni

30 Danno al patrimonio genetico

31 Meccanismi di riparazione
Rotture di singola elica (SSB) escissione enzimatica del segmento danneggiato resintesi di DNA dal segmento integro (stampo) Rotture di doppia elica (DSB) ricongiunzione dei segmenti interrotti

32 Meccanismi di riparazione
Riparazione senza errore (SSB) Riparazione imperfetta (DSB) mutazioni puntiformi delezioni, riarrangiamenti Non riparazione (DSB) Sopravvivenza senza mutazione Mutazione Morte cellulare

33 Mutazioni La cellula mutata può andare incontro a: morte programmata
le mutazioni sono incompatibili con la sopravvivenza cellulare a lungo termine morte riproduttiva la cellula sopravvive fino alla fine del proprio ciclo vitale ma non è più in grado di dividersi sopravvivenza la cellula mutata può dividersi e trasmettere le mutazioni acquisite alle cellule figlie  neoplasie

34 Proliferazione cellulare
I.R. Proliferazione cellulare Riparazione completa Riparazione imperfetta Mancata Riparazione Proliferazione neoplastica Morte o inattivazione cellulare

35 Sensibilità alle radiazioni ionizzanti
Le cellule più radiosensibili sono quelle: in piena attività mitotica midollo osseo epiteli tumori (radioterapia) le linee cellulari meno differenziate tessuti embrionari (Legge di Bergonie e Tribondeau)

36 Effetti biologici delle R.I.
Le cellule sono maggiormente sensibili agli effetti della radiazioni ionizzanti durante la fase M (mitosi) ed il termine della fase G2 Le cellule quiescenti (fase G0) sono scarsamente sensibili alle R.I.

37 Sensibilità alle radiazioni ionizzanti
Eccezione alla legge di B e T sono: Linfociti (fase G0) Oociti Cellule staminali midollari I linfociti sono tra le cellule maggiormente sensibili agli effetti delle R.I. tanto che possono essere utilizzate come Indicatore Biologico di Esposizione “in vivo” dal momento che la loro concentrazione ematica scende rapidamente (24 – 48h) in seguito ad una esposizione acuta di 0,25 – 1 Gy secondo una caratteristica curva di deplezione dose-dipendente.

38 Effetti biologici delle radiazioni ionizzanti
Effetti somatici deterministici Effetti somatici stocastici Effetti genetici stocastici Effetti sul prodotto del concepimento

39 Effetti deterministici delle radiazioni ionizzanti

40 Effetti deterministici delle radiazioni ionizzanti
Gli effetti deterministici sono dovuti all’irradazione di tutto il corpo oppure localizzata in alcuni tessuti, la quale produce inattivazione cellulare in grado tale da non poter essere compensata dalla proliferazzione delle cellule che sopravvivono. La perdita di cellule che ne risulta può causare una perdita di funzioni grave e clinicamente rillevabile in un tessuto od organo.

41 Effetti deterministici delle radiazioni ionizzanti
Vi è una dose soglia al di sotto della quale la perdita di cellule è troppo piccola per produrre una perdita funzionale clinicamente rilevabile del tessuto o dell’organo (effetto clinicamente silente) Oltre al danno diretto sul tessuto irradiato, al quadro patologico concorre il danno indiretto a carico dei vasi sanguigni e la stimolazione della matrice connettivale

42 Effetti deterministici
Compaiono solo al superamento di una dose-soglia caratteristica di ogni effetto e per ogni tessuto; Il superamento della dose-soglia comporta l’insorgenza dell’effetto in tutti gli irradiati, sia pure in funzione della variabilità individuale Il periodo di latenza è solitamente breve (giorni, settimane), talvolta l’insorgenza è tardiva (anni) La probabilità e la gravità delle manifestazioni cliniche aumenta proporzionalmente alla dose

43 Effetti deterministici delle radiazioni ionizzanti
Percentuale, severità Dose soglia e. d. dose

44 Effetti deterministici
Il frazionamento della dose provoca lo spostamento a destra della soglia di comparsa per gli effetti deterministici (riparazione cellulare), quindi in caso di frazionamento (esposizione a basse dosi per molti anni, come in quelle professionali) devono essere somministrate dosi maggiori per produrre il medesimo effetto.

45 Effetti deterministici delle radiazioni ionizzanti
Certi tessuti, come tipicamente il midollo osseo, hanno delle cellule progenitrici ( staminali) a divisione rapida ed in essi il danno si manifesta come un effetto immediato. Altri tessuti, come il fegato, hanno invece tipicamente dei bassi ratei di rinnovamento cellulare e il danno viene espresso sotto forma di effetti tardivi, quando le cellule si dividono.

46 Alterazioni funzionali e/o
Effetti deterministici delle radiazioni ionizzanti PRECOCI Localizzati Danno a singoli organi e/o tessuti: Alterazioni funzionali e/o morfologiche in giorni e settimane Generalizzati Sindrome Acuta da Radiazioni

47 Effetti deterministici delle radiazioni ionizzanti
RITARDATI Cataratta da Radiazioni Effetti Teratogeni

48 Radiosensibilità dei diversi tessuti
MOLTO RADIOSENSIBILE MEDIAMENTE RADIOSENSIBILE SCARSAMENTE RADIOSENSIBILE Tessuto linfatico Midollo osseo Epiteli Gonadi Tessuti embrionali Pelle Endoteli Polmoni Reni Fegato Cristallino SNC Muscoli Osso e cartilagine Tessuto connettivo

49 DOSE TOTALE PER ESPOSIZIONE ACUTA (Gy)
Dosi soglia per alcuni effetti deterministici nei tessuti piu’ radiosensibili TESSUTO ED EFFETTI DOSE TOTALE PER ESPOSIZIONE ACUTA (Gy) RATEO DI DOSE ANNUALE RICEVUTA PER ESPOSIZION MOLTO FRAZIONATA O PROTRATTA PER MOLTI ANNI MIDOLLO OSSEO DEPRESSIONE DELL’EMOPOIESI 0,5 >0,4 TESTICOLI STERILITA’ TEMPORANEA STERELITA’ PERMANENTE 0,3 3,5-6,0 0,4 2,0

50 DOSE TOTALE PER ESPOSIZIONE ACUTA (Gy)
Dosi soglia per alcuni effetti deterministici nei tessuti piu’ radiosensibili TESSUTO ED EFFETTI DOSE TOTALE PER ESPOSIZIONE ACUTA (Gy) RATEO DI DOSE ANNUALE RICEVUTA PER ESPOSIZION MOLTO FRAZIONATA O PROTRATTA PER MOLTI ANNI OVAIO STERELITA’ 2,5-6,0 >0,2 CRISTALLINO OPACITA’ VISIBILI ALTERAZIONE VISIVA (CATARATTA) 2,0 5,0 >0,1 >0,4

51 PATOLOGIA DETERMINISTICA CUTANEA
RADIODERMITE Sindrome clinica conseguente ad una esposizione acuta della cute all’effetto lesivo delle radiazioni ionizzanti. Il danno si verifica per una dose superiore ai 3 Gy ed è solitamente conseguente ad una esposizione accidentale (es. ritrovamento e manipolazione di sorgente orfana). Il danno è inizialmente a carico dello strato germinativo dell’epitelio , ma va successivamente a coinvolgere l’epidermide, il derma ed i tessuti sottocutanei. La sequenza clinica è caratteristica e dipende dalla dose di esposizione.

52 PATOLOGIA DETERMINISTICA CUTANEA
RADIODERMITE Dopo l’esposizione compare una reazione eritematosa precoce e fugace con possibile intenso prurito (eritema precoce) Scomparso l’eritema il quadro clinico si mantiene asintomatico per diversi giorni (fino a 3 settimane) (fase di latenza) Dopo tale periodo esordisce il quadro clinico conclamato che in base alla intensità della esposizione può evolvere da una fase eritematosa (eritema secondario) verso la formazione di una epidermite secca, essudativa (flittene), ulcero-necrotica. (fase di stato)

53 PATOLOGIA DETERMINISTICA CUTANEA
RADIODERMITE SINTOMO DOSE-RANGE (Gy) TEMPO DI COMPARSA (gg) ERITEMA 3-10 14-21 EPILAZIONE >3 14-18 EPITELITE SECCA 8-12 25-30 EPITELITE ESSUDATIVA 15-20 20-28 FLITTENE 15-25 ULCERAZIONE >20 NECROSI >25 >21

54 Radiodermite conseguente ad esposizione localizzata a 7 Gy di R gamma.

55 Radiodermite regione dorsale.

56 PATOLOGIA DETERMINISTICA CUTANEA
RADIODERMITE Le radiodermiti mostrano un importante componente vascolare che rende ragione della difficile guarigione delle stesse e delle frequenti sovrainfezioni. L’interessamento dei tronchi nervosi rende ragione della importantissima componente algica resistente alle terapie. Ad una distanza di 3 mesi – 2 anni dalla risoluzione del quadro, a livello della sede interessata si può manifestare una fibrosi del derma profondo e del sottocute fino ad una completa scomparsa del tessuto adiposo Frequente la degenerazione neoplastica delle aree fibrotiche

57 Radiodermite esiti sclerosanti

58 PATOLOGIA DETERMINISTICA CUTANEA
RADIODERMATOSI (CUTE DEL RADIOLOGO) Consegue ad esposizioni protratte a dosi di radiazioni alle mani tipiche dell’epoca “eroica” della radiologia. Clinicamente è caratterizzata da invecchiamento precoce della pelle con assottigliamento generalizzato del sottocute, ipercheratosi irregolare, perdita degli annessi, teleangectasie, onicopatia. Frequente è la degenerazione neoplastica epiteliomatosa del quadro cutaneo.

59 Carcinoma squamocellulare su radiodermite cronica

60 PATOLOGIA DETERMINISTICA OCULARE
CATARATTA DA RADIAZIONI IONIZZANTI Opacità lenticolari possono comparire in seguito ad esposizione acuta a dosi >2 Sv o per esposizione frazionate > 5 Sv (rateo anno >0,1 Sv) Una cataratta (opacità con compromissione del visus) compare per dosi >5 Sv (esposizione acuta) o >8 Sv (esposizione frazionata: rateo annuo >0.15 Sv) Morfologicamente è localizzata in sede sottocapsulare posteriore e deve essere clinicamente differenziata da analoghe opacità dovute ad altri agenti professionali (IR, Visibile, C.E.M., calore) o extraprofessionali (farmaci: cortisone). La cataratta insorge solitamente a distanza dalla avvenuta esposizione (mesi in caso di esposizione acuta, anni per dosi frazionate).

61 PATOLOGIA DETERMINISTICA OCULARE
CATARATTA DA RADIAZIONI IONIZZANTI Non è possibile diagnosticare una “cataratta da radiazioni” se non in base alla dose ricevuta dal cristallino, essendo le opacità da raggi morfologicamente indistinguibili da altre forme precedentemente elencate Opacità centrali o periferiche di natura congenita o acquisita sono presenti nel 25% circa della popolazione Non esiste un maggior rischio di progressione per cataratte pregresse in seguito ad esposizione a R.I.

62 PATOLOGIA DETERMINISTICA EMATOLOGICA
LE RADIAZIONI IONIZZANTI ESERCITANO UN EFFETTO DEPRESSIVO E CITOTOSSICO A CARICO DI TUTTI GLI ELEMENTI DELLA SERIE EMATICA; LE CELLULE MAGGIORMENTE SENSIBILI SONO QUELLE STAMINALI DEL MIDOLLO OSSEO CHE POSSONO ESSERE COMPLETAMENTE ABLATE AD UNA DISTANZA DI 48 ORE DA UNA ESPOSIZIONE ACUTA DI 8 Gy; LA MANCANZA DEI PRECURSORI DETERMINA PROGRESSIVA RIDUZIONE DEGLI ELEMENTI CIRCOLANTI IN ACCORDO CON LA LORO CINETICA DI RICAMBIO (CURVE DI DEPLEZIONE); PER QUANTO CONCERNE LE CELLULE EMATICHE CIRCOLANTI, IL TIPO CELLULARE MAGGIORMENTE RADIOSENSIBILE E’ RAPPRESENTATO DAI LINFOCITI CHE VENGONO RIDOTTI PER DOSI >0,25 Gy

63 PATOLOGIA DETERMINISTICA ESPOSIZIONE TB
Sindrome Acuta da Radiazioni (SAR- ARS) E’ l’effeto deterministico più grave dell’esposizione a R.I. Segni e sintomi isolati non sono specifici, ma presentandosi collettivamente divengono assai suggestivi Una combinazione di segni e sintomi compare in fasi successive ore e giorni dopo l’esposizione - Fase prodromica - Fase di latenza - Fase clinica - Fase di risoluzione (o morte)

64 Sindrome Acuta da Radiazioni (SAR- ARS)
LA COMPLESSITA’ E LA GRAVITA’ DEI SINTOMI E’ DETERMINATA DA: - La dose di radiazioni ricevuta - Il Dose-Rate - La più o meno omogenea dustribuzione della dose nel corpo (irradiazione parziale / irradiazione al corpo intero)

65 GASTROINTESTINAL TRACT
Principali sindromi che contribuiscono al decesso dopo esposizione al corpo intero WHOLE BODY DOSE GY SYNDROME TIME OF DEATH AFTER THE EXPOSURE-DAYS 3-10 BONE MARROW 30-60 10-30 GASTROINTESTINAL TRACT 10-20 >30 NEUROVASCULAR SYSTEM 1-5

66 Effetti deterministici delle radiazioni ionizzanti
LA PREVENZIONE DEGLI EFFETTI DETERMINISTICI PUO’ ESSERE EFFICACEMENTE ATTUATA RIDUCENDO L’ESPOSIZIONE AL DI SOTTO DELLA DOSE SOGLIA. ALLE DOSI DI ESPOSIZIONE CONSENTITE NON E’ POSSIBILE LA COMPARSA DI ALCUN EFFETTO DI TIPO DETERMINISTICO NELLA POPOLAZIONE LAVORATIVA.

67 Effetti stocastici delle radiazioni ionizzanti

68 Effetti stocastici (Leucemie, tumori solidi)
Gli effetti stocastici sono dovuti a una modificazione di cellule normali provocata da un evento di ionizzazione ( mutazione non letale) La probabilità che una tale modificazione si verifichi in una popolazione di cellule di un tessuto è proporzionale alla dose.

69 Effetti stocastici Non richiedeono il superamento di una dose-soglia per la comparsa (ipotesi cautelativa); Sono a carattere probabilistico; Sono distribuiti casualmente nella popolazione esposta; La frequenza di comparsa aumenta al crescere della dose; Si manifestano dopo anni (talora decenni) dalla esposizione; Non mostrano gradualità di comparsa (effetti tutto o nulla); Sono indistinguibili dagli effetti nei non esposti

70 Effetti stocastici delle radiazioni ionizzanti
Probabilità dell’effetto Basse dosi dose

71 Comportamento delle RI alle basse dosi
Probabilità dell’effetto A: sovraliminare B: LNT C: sottolineare D: lineare con soglia A B C D dose

72 Effetti stocastici LA COMPARSA DI EFFETTI STOCASTICI (TUMORI) A BASSE DOSI DI ESPOSIZIONE E’ UNA IPOTESI SPERIMENTALE CAUTELATIVA DI RADIOPROTEZIONE NON SUFFREGATA DA EVIDENZE CLINICHE O SPERIMENTALI. ALCUNI AUTORI ATTRIBUISCONO EFFETTI PROTETTIVI ALLE BASSE ESPOSIZIONI A RADIAZIONI IONIZZANTI (“ORMESI DA RADIAZIONI”; RISPOSTA ADATTATIVA)

73 Effetti neoplastici alle basse dosi
Iniziali evidenze epidemiologiche per induzione di neoplasie sono presenti per dosi: 5 – 50 mSv per esposizioni acute 50 – 100 mSv per esposizioni protratte Al di sotto di tali valori non è possibile verificare l’associazione (confondenti) Limiti di esposizione professionale: 20 mSv/anno

74 Exposed in a nuclear accident
Effetti stocastici + Exposed in a nuclear accident U-miners Early radiologist Ra-dial painters A- bomb survivors Skin Bone Breast Lung Thyroid gland leukemia Population groups

75 Effetti stocastici delle radiazioni ionizzanti
Andamento temporale del rischio di neoplasia dopo esposizione Incidenza Leucemie, Osteosarcoma Altri tumori 2 5 30 Anni dall’esposizione

76 Effetti genetici delle radiazioni ionizzanti

77 Effetti genetici NON E’ STATO POSSIBILE FINO AD ORA RILEVARE UN ECCESSO DI MALATTIE EREDITARIE NELLA PROGENIE DI SOGGETTI UMANI ESPOSTI A RADIAZIONI IONIZZANTI RISPETTO AI SOGGETTI NON ESPOSTI. NELLA DISCENDENZA DEGLI ESPOSTI ALLE BOMBE DI HIROSHIMA E NAGASAKY (30000 SOGGETTI) NON E’ MAI STATO RILEVATO ALCUN INCREMENTO DI MALATTIE GENETICHE TALI EVIDENZE SONO STATE SOLO SU SPECIE ANIMALI E VEGETALI E, PRECAUZIONALMENTE, SI APPLICANO ALLA PROGENIE UMANA

78 Effetti deterministici
“speciali” EFFETTI TERATOGENI DELLE RADIAZIONI

79 Effetti sul prodotto del concepimento
I tessuti embrionari e fetali sono sensibili all’azione delle radiazioni e l’effetto provocato dalla esposizione dipende dallo stadio di sviluppo

80 Effetti sul prodotto del concepimento
TIPICI EFFETTI DELLE RADIAZIONI SULL’EMBRIONE Morte embrionale, fetale o neonatale Ritardo della crescita intrauterina Malformazioni congenite

81 EFFETTO DELLE RADIAZIONI
Effetti delle radiazioni nelle varie fasi della gestazione ETA’ GESTAZIONALE STADIO EFFETTO DELLE RADIAZIONI 0-9 GIORNI PREIMPIANTO TUTTO O NULLA 10 GIORNI 6 SETTIMANE ORGANOGENESI MALFORMAZIONI CONGENITE RITARDO DI CRESCITA 6-40 SETTIMANE FETALE RITARDO DI CRESCITA, MICROCEFALIA, RITARDO MENTALE

82 Effetti sul prodotto del concepimento
FASE PREIMPIANTO (1-9° giorno): Il danno può condurre alla morte dell’embrione o ad una sopravvivenza senza danni dello stesso (legge del “tutto o nulla”) In pratica l’unico effetto che potrà manifestarsi sarà una precocissima interruzione di gravidanza.

83 Effetti sul prodotto del concepimento
MORFOGENESI (9°giorno-3°mese): in tale periodo i tessuti sono in attiva replicazione ed altamente radiosensibili (max 8 – 12 sett); i danni causati dalle radiazioni in questo periodo possono determinare la comparsa di malformazioni. FASE FETALE (3°mese-termine gestazione): La sensibilità degli organi all’azione delle radiazioni decresce mentre rimane alta la possibilità di effetto sul SNC con possibile ritardo mentale nel nascituro.

84 Effetti delle radiazioni nelle varie fasi della gestazione
Nella fase preimpianto il danno da radiazioni risulta o nella morte o nella sopravvivenza dell’uovo fecondato senza effetti apprezzabili In pratica l’unico effetto che potrà manifestarsi sarà una precocissima interruzione di gravidanza.

85 Effetti delle radiazioni nelle varie fasi della gestazione
Il periodo più critico è quello dell’ organogenesi. Gli embrioni sono sensibili agli effetti letali, teratogenici e ritardanti l’accrescimento a causa della criticità delle attività cellulari e dell’elevato numero di cellule radiosensibili. Gli effetti predominanti per dosi > 0,5 Gy sono: Ritardo di crescita intrauterino, importanti malformazioni congenite, microcefalia e ritardo mentale. Malformazioni radioindotte in strutture diverse dal Sistema Nervoso Centrale non sono comuni nell’uomo. Il danno neurologico radioindotto si osserva a partire dall’inizio dell’organogenesi (8 settimane) e si stende a tutto il periodo fetale.

86 Effetti delle radiazioni nelle varie fasi della gestazione
Dati sui sopravvissuti alle esplosioni atomiche indicano che la microcefalia può risultare da dosi in aria di 0,1-0,2 Gy. L’incidenza di grave ritardo mentale come funzione della dose è lineare senza soglia apparente a 8-15 settimane con un coefficiente di rischio di 0,4 Gy. L’incidenza è circa 4 volte inferiore a settimane. Per le altre malformazione è riportata l’evidenza di una soglia. L’ irradiazione nel periodo fetale può determinare ritardo di accrescimento.

87 Indicazioni per l’interruzione di gravidanza
Dose soglia per effetti teratogeni circa 0,1 Gy Tasso di abortività naturale <30 %. A 0,1 Gy l’incremento è dello 0.1-1% Per dosi al feto > 0,5 Gy a 7-13 settimane: rischio significativo di ritardo di accrescimento e danno neurologico 0.25-0,5 Gy a 7-13 settimane: decisione dei genitori con assistenza da parte del medico

88 Effetti sul prodotto del concepimento
DATA LA SENSIBILITA’ DEL NASCITURO ALL’EFFETTO DELLE RADIAZIONI IONIZZANTI, E’ ESTREMAMENTE IMPORTANTE CHE ESSO NON VENGA ESPOSTO AL RISCHIO DI ESPOSIZIONE PER TUTTO IL PERIODO GESTAZIONALE. A TAL FINE LA LAVORATRICE DEVE DARE IMMEDIATO AVVISO DELLO STATO DI GRAVIDANZA AL PROPRIO DATORE DI LAVORO (O AL PREPOSTO) NON APPENA NE VENGA A CONOSCENZA PER ESSERE ALLONTANATA DALLA LAVORAZIONE COMPORTANTE ESPOSIZIONE E REIMPIEGATA IN MANSIONE COMPATIBILE

89 Radioprotezione Normativa

90 Campo di applicazione (art. 1)
1. Le disposizioni del presente decreto si applicano: a) alla costruzione, all'esercizio ed alla disattivazione degli impianti nucleari; "b) a tutte le pratiche che implicano un rischio dovuto a radiazioni ionizzanti provenienti da una sorgente artificiale o da una sorgente naturale nei casi in cui i radionuclidi naturali siano o siano stati trattati per le loro proprietà radioattive fissili o fertili e cioè : 1) alla produzione, trattamento, manipolazione, detenzione, deposito, trasporto, importazione, esportazione, impiego, commercio, cessazione della detenzione, raccolta e smaltimento di materie radioattive; 2) al funzionamento di macchine radiogene; 3) alle lavorazioni minerarie secondo la specifica disciplina di cui al capo IV;". "b-bis) alle attività lavorative diverse dalle pratiche di cui ai punti 1, 2 e 3 che implicano la presenza di sorgenti naturali di radiazioni, secondo la specifica disciplina di cui al capo III bis;

91 Principi concernenti le pratiche (art. 2)
“I nuovi tipi o le nuove categorie di pratiche che comportano una esposizione a radiazioni devono essere giustificate … dai loro vantaggi … rispetto al detrimento sanitario che ne può derivare” (Giustificazione) “Qualsiasi pratica deve essere svolta in modo da mantenere l’esposizione al livello più basso ragionevolmente ottenibile…” (Ottimizzazione) “La somma delle dosi derivanti da tutte le pratiche non deve superare i limiti di dose stabiliti per i lavoratori esposti, gli apprendisti, gli studenti e gli individui della popolazione” (Limitazione)

92 Limitazione delle dosi
Limiti massimi fissati per i lavoratori. Devono essere tali da: rendere impossibile lo sviluppo di effetti deterministici (inferiori alla dose soglia) rendere improbabile lo sviluppo di effetti stocastici (livello più basso ragionevolmente possibile) I limiti di dose sono diversi per le differenti categorie di soggetti (popolazione generale, lavoratori)

93 Capo VIII “Protezione sanitaria dei lavoratori”
Si applica a: Lavoratori subordinati Lavoratori ad essi equiparati Apprendisti Studenti Allievi di istituti di istruzione ed universitari

94 Lavoratori Esposti (All. III)
L’EQ nella relazione preliminare di radioprotezione prevede alla classificazione dei lavoratori e delle aree Son identificati come “Lavoratori Esposti” coloro che a causa della specifica attività svolta sono suscettibili di superare in un anno solare uno o più dei seguenti valori di esposizione: 1 mSv di Dose Efficace 15 mSv di Dose Equivalente per il Cristallino 50 mSv di Dose Equivalente per: cute estremità

95 Classificazione dei lavoratori esposti
I lavoratori esposti sono classificati in: categoria A categoria B a seconda che siano suscettibili di superare (cat. A) uno dei seguenti valori di esposizione: 6 mSv di Dose Efficace 45 mSv di Dose Equivalente per il Cristallino 150 mSv di Dose Equivalente per cute estremità

96 Limiti di dose per i Lavoratori esposti (categoria A e B)
20 mSv di Dose Efficace 150 mSv di Dose Equivalente per il Cristallino 500 mSv di Dose Equivalente per cute estremità La verifica del non superamento dei limiti di dose viene effettuata dall’Esperto Qualificato mediante lettura dei dosimetri individuali. Le rilevazioni individuali sono obbligatorie per i radioesposti di categoria A.

97 Gli strumenti di rivelazione delle radiazioni
Dosimetri ambientali Dosimetri personali Rivelatori a gas Camera a ionizzazione, contatore geiger emulsioni fotografiche Dosimetri a termoluminescenza

98 Principio di funzionamento dei rivelatori a gas
funzionano con questo principio: Contatori Geiger Camere ad ionizzazione Penne dosimetriche individuali

99 Rivelatori a gas: penne dosimetriche individuali

100 Vari tipi di film-badge
Devono essere SEMPRE portati al seguito Una volta letti, costituiscono un documento Stabile ed archiviabile della dose ricevuta

101 Alcuni tipi di dosimetri TLD

102 Classificazione delle aree di lavoro
Zona Classificata: qualsiasi zona sottoposta a regolamentazione ai fini della radioprotezione Zona Sorvegliata: qualsiasi zona nella quale sia possibile il superamento di uno qualsiasi dei valori limite per la classificazione di lavoratore esposto di categoria B Zona Controllata: qualsiasi zona nella quale sia possibile il superamento di uno qualsiasi dei valori limite per la classificazione di lavoratore esposto di categoria A L’accesso alla zona Controllata è segnalato e regolamentato da apposite procedure scritte.

103 Disposizioni per le lavoratrici madri (art. 69)
le donne gestanti non possono svolgere attività che le espongano in zone classificate o comunque attività che potrebbero esporre il nascituro ad una dose che ecceda 1 mSv durante il periodo di gravidanza E’ fatto obbligo alle lavoratrici di notificare al DDL il proprio stato di gestazione, non appena accertato. E’ vietato adibire le donne che allattano ad attività comportanti un rischio di contaminazione (radioisotopi)

104 Sorveglianza Medica La Sorveglianza Medica viene condotta mediante visite mediche: preventive periodiche annuali (categoria B) semestrali (categoria A) Sorveglianza medica eccezionale a fine rapporto di lavoro I lavoratori hanno l’obbligo di sottoporsi a visita di sorveglianza medica

105 Sorveglianza Medica Stato di salute generale
Funzionalità psico-fisica Funzionalità di organi ed apparati critici per l’esposizione Cute Organi emopoietici Cristallino Altri (tiroide, etc) Eventuali condizioni di ipersuscettibilità individuale Genetico – ereditarie (sindromi familiari) Patologiche individuali (malattie pregresse o in atto) Ambientali (fumo di sigaretta, inquinanti, etc)


Scaricare ppt "Radiazioni Ionizzanti"

Presentazioni simili


Annunci Google