La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

1 per Scienze Geologiche prof. Maurizio Spurio Parte 3.

Presentazioni simili


Presentazione sul tema: "1 per Scienze Geologiche prof. Maurizio Spurio Parte 3."— Transcript della presentazione:

1 1 per Scienze Geologiche prof. Maurizio Spurio Parte 3

2 2 And God Said and there was light 19. Le equazioni di Maxwell

3 3 1- Legge di Gauss: le cariche elettriche originano campi elettrici. Linee di forza aperte. 2- Non esistono cariche magnetiche isolate. Linee di forza di B sono chiuse 3- Legge di Faraday: un campo magnetico variabile genera un campo elettrico. 4- Legge di Ampere: le correnti elettriche originano campi magnetici + termine di Maxwell: un campo elettrico variabile genera un campo magnetico. All’incirca all’epoca dell’unità d’Italia, le equazioni fondamentali dei processi elettrici e magnetici erano note: mancava un solo termine, aggiunto “per via teorica” da J.C Maxwell. Egli pubblicò l’insieme delle equazioni (1864) che riassumono l’elettromagnetismo e….

4 4 Il termine di Maxwell La legge di Ampere e’ valida solo per correnti stazionarie. Infatti, considerando un circuito con un condensatore, si avrebbe la seguente assurda situazione: Maxwell realizzò che occorreva inserire un nuovo termine nella legge di Ampere, perché vi fosse compatibilità tra le due situazioni.

5 5 Con l’aggiunta di tale termine, il flusso del campo E all’interno del condensatore: Quindi, il nuovo termine permette che il calcolo della circuitazione del campo magnetico abbia lo stesso valore, indipendentemente dalla superficie che viene utilizzata. (Talvolta, il termine di M. viene chiamato corrente di spostamento). Il termine di Maxwell

6 6 Oscillazioni elettromagnetiche Un semplice circuito con capacità e induttanza mostra una interessante proprietà. Supponiamo che inizialmente vi sia una carica q o sul C.D alla legge alle maglie: La soluzione: Come si vede dalla figura, l’energia del sistema oscilla tra energia nel condensatore (= E ) ed energia nell’induttore (= B ). Il passaggio avviene ciclicamente con periodo: (Matematicamente, il problema e’ identico a quello del sistema con molla (forza elastica) affrontato nel cap. 5.3)

7 7 Oscillazioni forzate Nel caso reale, nel circuito e’ presente una certa resistenza: la resistenza dissipa energia smorzando le oscillazioni: La soluzione di questa equazione differenziale e’ (con q o =carica iniziale sul C): (provate a verificare per sostituzione!) t q(t) La fem mantiene le oscillazioni periodiche nel circuito, mentre dalla resistenza viene dissipata energia. La cosa interessante, e’ che attraverso un’antenna possono essere emesse onde elettromagnetiche! Perché il circuito non si smorzi, occorre rifornire di nuovo l’energia dissipata dalla resistenza R, inserendo una fem alternata nel circuito.

8 8 L’arcobaleno di Maxwell A coronamento della sua opera, Maxwell non solo raggruppo in un set di equazioni tutti i fenomeni elettromagnetici, ma predisse nuovi fenomeni. Il più strabiliante dei quali e’ l’osservazione che la luce non e’ che un fenomeno elettromagnetico. Radiazione EM può essere emessa utilizzando opportunamente circuiti elettrici; la radiazione emessa si muove alla velocità della luce. Le onde radio vennero predette e effettivamente scoperte da H. Hetz (~1880). Stessa tecnologia oggi usata per trasmissioni radio, TV e telefono

9 9 20. Le onde

10 10 Proprietà generali delle onde Un’onda è una perturbazione che si propaga trasportando energia, ma non materia. Le onde meccaniche implicano la perturbazione di un mezzo meccanico (ad es. l’aria per le onde sonore, la terra per i terremoti, l’acqua per le onde…). Una perturbazione ondosa può propagarsi in modo parallelo o perpendicolare alla direzione di propaga- zione dell’onda stessa Nel primo caso, si chiamano onde longitudinali Esempio di produzione di onde longitudinali

11 11 Proprietà generali delle onde Nei casi generali, sono presenti in una perturbazione sia onde longitudinali che trasversali (es. nei terremoti). In generale, un’onda è escritta da una funzione che dipende dallo spazio e dal tempo, oltre che da alcuni parametri Esempio di produzione di onde trasversali

12 12 Ampiezza e lunghezza dell’onda Un’onda sposta un mezzo dal suo stato di equilibrio. Lo spostamento massimo rispetto alla posizione di equilibrio è l’ampiezza dell’onda. La perturbazione che si sposta (verso destra) solleva e abbassa la barca, ma non la sposta La lunghezza d’onda ( ) è la distanza tra due massimi (o minimi) consecutivi, ad un certo istante di tempo t. La lunghezza d’onda la le dimensioni di una lunghezza e, ovviamente, si misura in metri. Talvolta si definisce il numero d’onda come:

13 13 Frequenza e periodo dell’onda In un’onda continua, ogni punto del mezzo si muove di moto oscillatorio Il periodo T dell’onda è il tempo necessario perché in un dato punto dello spazio si ripresenti la stessa configurazione Il periodo ha le dimensioni di un tempo e si misura in secondi. Il reciproco del periodo T si chiama frequenza: La frequenza rappresenta quante volte un’onda si ripete in 1 secondo. Si chiama invece pulsazione (o velocità angolare):

14 14 Velocità dell’onda Durante un periodo T, un osservatore in una posizione fissa vede passare davanti a se una intera lunghezza d’onda. Poiché quindi l’onda percorre uno spazio pari alla lunghezza d’onda  in un periodo T, la sua velocità di propagazione è:

15 15 La matematica della propagazione L’impulso evidenziato (“foto” ad un istante fissato) è descritto da una funzione che descrive lo spostamento y del mezzo perturbato in termini di x L’impulso si propaga con una velocità v. Dopo un tempo pari ad un periodo T, il valore dello spostamento y riassume lo stesso valore, ossia: Un caso semplice ed importante è quello di una funzione armonica semplice (= onda descritta dalla funzione seno o coseno). A t=0: Se vogliamo estendere la validità ad ogni istante di tempo:

16 16 La teoria dell’EM di Maxwell predice l’esistenza di un fenomeno fisico che permette il trasporto di energia con una velocità ben definita e costante, che coincide con la velocità della luce. Non occorre un mezzo per propagare le onde EM. Quindi: la luce altro non è che un fenomeno elettromagnetico. Le proprietà delle onde EM sono: (NB: sono facilmente dimostrabili matematicamente, ma questa è omessa e lasciata facoltativa agli studenti interessati) 1. Una onda elettromagnetica è composta da un campo E e B. 2. I campi E e B sono tra di loro ortogonali; 3. I campi E e B sono sempre perpendicolari alla direzione di avanzamento dell’onda stessa; per questo motivo, la direzione di avanzamento dell’onda è definito dal vettore E  B. 4. Le intensità dei campi E e B variano sempre come la funzione “seno”, e la loro variazione avviene sempre alla stessa frequenza e in fase Proprietà delle onde EM

17 17 5. Tutte le onde EM nel vuoto, luce compresa, hanno la stessa velocità: 6. Le onde hanno una data frequenza  e lunghezza d’onda, ma il prodotto  e’ sempre uguale a c 7. Il rapporto tra le ampiezze è tale che: E = Bc

18 18 8. L’onda trasporta energia. La quantità di energia trasportata nell’unità di tempo per unità di area da un’onda è descritta dal vettore di Poynting Quindi, il flusso di energia per secondo dipende dal quadrato del campo elettrico. Poiché questo varia rapidamente nel tempo, la maggior parte degli strumenti (tra cui i nostri occhi) misurano il valor medio di S. Tale valor medio è chiamato intensità: L’intensità di un’onda EM dipende dal quadrato del campo elettrico. NB: oppure, allo stesso modo, dipende dal quadrato del campo magnetico

19 19 1+1=4 Supponiamo di voler sommare 2 onde EM identiche ed esattamente in “fase” in un certo punto dello spazio (per semplicità, x=0): Il campo risultante si somma: L’intensità dell’onda risultante diviene: NOTA: perché lo studente non deve turbarsi per il cambio di segno?

20 20 1+1=0 Supponiamo di voler sommare le stesse 2 onde EM identiche, ma “sfasate” di 180 o : Il campo risultante si somma: L’intensità dell’onda risultante diviene:

21 21 1+1=? Se le onde sono sfasate di un angolo qualsiasi, si puo’ mostrare (usare le formule di prostaferesi) che L’intensità dell’onda risultante diviene: Esercizio: trovare la formula esatta per I

22 Più veloci della luce? “Millennium Falcon”

23 23 Lo spettro elettromagnetico e la luce La radiazione EM (di cui la luce occupa un piccolo intervallo di frequenze) assume nomi diversi a seconda della sua frequenza. I meccanismi che la originano sono diversi a seconda della frequenza

24 24 i)Luce visibile Sensibilità relativa dell’occhio umano alle diverse lunghezze d’onda L’occhio umano si e’ adattato ad essere sensibile nell’intervallo in cui e’ massima la radiazione solare, [ ] nm. La luce viene emessa quando gli elettroni negli atomi cambiano il loro stato di moto, come previsto nel modello di Bohr La lunghezza d’onda della IR e’ [0.7  m- 1 mm]. Viene emessa da molecole quando variano il loro stato di moto vibrazionale o rotazionale. ii) Radiazione infrarossa (IR) Fotografie infrarosse L’ IR viene avvertito come calore radiante. Tutti gli oggetti caldi emettono IR

25 25 iii) Microonde Comprese in un intervallo [1 mm-1 m]. Sono emesse da oscillatori EM in circuiti elettrici. Una radiazione di microonde ci giunge anche dall’Universo come “relitto fossile” del Big Bang. iv) Onde radio Sono caratterizzate da > 1 m. Sono prodotte in circuiti elettrici oscillanti; scegliendo accuratamente la geometria del circuito, si puo’ controllare la distribuzione spaziale della radiazione emessa Cassiopea emette onde Radio Il Radiotelescopio del CNR a Medicina I ricevitori devono avere dimensioni della da ricevere. Le onde radio sono tra i piu’ importanti metodi d’indagine in Astronomia

26 26 v) Ultravioletto (UV) Il Sole visto in UV Lampade UV A lunghezze d’onda piu’ piccole del visibile, incontriamo l’ UV con [1 nm- 400 nm]. Come il visibile, sono prodotte da transizio-ni atomiche degli atomi più esterni, e sono piu’ energetiche. vi) Raggi X (XR) I RX hanno [0.01 nm-10 nm]. Sono prodotti dalle transizioni degli elettroni più fortemente legati negli atomi (interni). La lunghezza d’onda corrisponde alla distanza tipica degli atomi nei solidi; tale radiazione e’ altamente penetrante e viene largamente utilizzata per la diagnostica medica e per lo studio dei materiali solidi. RX al polmone

27 27 vii) Raggi  I R  hanno <0.001 nm, e corrispondono alla radiazione EM piu’ energetica che si conosca. Puo’ essere emessa da transizioni nei nuclei (normalmente, radioattività) oppure dal decadimento di particelle elementari. L’esposizione ai R  e’ estremamente pericolosa, in quanto altamente penetrante. Un getto di  da una Galassia lontana

28 28 Polarizzazione In generale, un’onda EM può essere la risultante di più onde. In molti casi, quando le sorgenti non sono coerenti, il risultato è un’onda in con campi elettrici orientati a caso. L’onda si dice non polarizzata. Nel caso in cui il meccanismo che produce l’onda (ad es., un trasmettitore TV) mantiene costante la direzione del campo elettrico delle onde prodotte, l’onda si dice polarizzata. Il piano contenente il campo E si dice piano di oscillazione (o polarizzazione) dell’onda

29 29 Un metodo di polarizzazione (nel visibile) Un’onda non polarizzata si polarizza quando passa una lamina polariz- zante (ad es. polaroid). Le molecole della lamina sono tali che il campo elettrico dell’onda EM disposto in una certa direzione può compiere lavoro sugli elettroni delle catene molecolari. Vi sono altri metodi di polarizzare Se  è l’angolo tra il vettore E e la direzione di polarizzazione:

30 30 I “fotoni” e la fisica moderna La fisica moderna ha modificato la visione classica della radiazione EM. Quest’ultima e’ ancora utile per lo studio di certi fenomeni (propagazione delle onde, interferenza, diffrazione…) ma non più sufficiente per altri fenomeni (effetto fotoelet- trico, Compton, interazione tra radiazione EM e particelle elementari). In questo caso, si utilizza il concetto di fotone I fotoni vengono emessi dall'atomo quando gli e- saltano da un livello orbitale ad un altro: gli e- con questi salti irradiano od assorbono energia non in continuazione, ma in quantità determinate (discrete) dette "quanti di energia". Anche il fotone, come le altre particelle, in alcune esperienze si comporta come se fosse un corpuscolo, in altre come se fosse un’onda. Nel modello di Bohr, l’energia E  del fotone corrisponde alla differenza tra le energie nei diversi livelli: E  = h = (E f -E i ). rappresenta la “frequenza” del fotone. Come nella teoria classica, frequenza e lunghezza d’onda sono legate dalla relazione c=

31 31 Nota: useremo molto il “visibile”, giusto per la particolarità che lo vediamo!

32 32 Riflessione e rifrazione Quando un’onda incide su un mezzo diverso da quello precedente, parte dell’onda viene riflessa e parte viene rifratta. Riferendoci alla foro, possiamo definire l’angolo di incidenza, l’angolo di riflessione e l’anglo di rifrazione. Esistono relazioni tra questi: Legge della Riflessione: Legge della Rifrazione (legge di Snell): Dove n 1, n 2 sono costanti adimensionali chiamate indici di rifrazione, che dipendono solo dalle sostanze utilizzate

33 33 Indici di rifrazione di alcuni materiali Notate cosa succede!

34 34 Dispersione cromatica L’indice di rifrazione di un mezzo dipende da come la luce si propaga nel mezzo. Poiché la luce bianca non è che la sovrapposizione di molte onde EM a diverse lunghezze d’onda, può anche succedere che la velocità con cui l’onda nel mezzo si propaga dipenda dalla sua lunghezza d’onda. Questo effetto si chiama dispersione cromatica.

35 35 Riflessione totale Consideriamo ora una sorgente in un mezzo con n 1 >n 2 (ad es., luce che vuole passare dal vetro all’aria). In tal caso, esiste un angolo di incidenza tale che : Questo angolo, chiamato angolo critico è tale che tutta la luce che incide sulla superficie di separazione con angoli maggiori di  c non riesce ad essere rifratta, ed è solo riflessa all’interno del mezzo. Applicazioni!

36 36 Cosa notate di strano? Manet: Bar delle Folies Bergères

37 37 Specchi piani Per vedere un oggetto con i nostri occhi, occorre che l’oggetto rifletta parte della luce che lo colpisce. Il nostro occhio può percepire immagini. Questo, possono essere classificate come immagini reali o virtuali. Immagine reale: quando i fotoni sono prodotti dall’oggetto stesso (lampada), o sono stati “rimbalzati” dall’oggetto stesso (libro illuminato) Uno specchio riflette tutta la luce incidente, e può formare immagini virtuali (sono in posizione errata). Legge dello specchio piano: Convenzione: definisce una immagine virtuale, passano solo i prolungamenti dei raggi

38 38 Specchi sferici In uno specchio concavo, la luce parallela incidente viene concentrata in un unico punto (fuoco) reale F, dalla stessa parte dello specchio da cui provengono i raggi. In uno specchio convesso, la luce parallela incidente sembra divergere da un fuoco virtuale in F, dalla parte opposta da quella di provenienza dei raggi. f = distanza focale Esercizio: dimostrare che, dove r= raggio di curvatura specchio

39 39 Immagini negli specchi sferici Formiamo le immagini di un oggetto facendo riflettere alcuni raggi luminosi, ricordando che: raggi paralleli all’asse passano per il fuoco (e viceversa); l’angolo di riflessione è uguale a quello d’incidenza Le immagini reali si formano dalla stessa parte dello specchio dove è posto l’oggetto, mentre quelle virtuali dalla parte opposta

40 40 Leggi degli specchi sferici Chiamando: f= distanza focale p= distanza dell’oggetto dallo specchio i= distanza dell’immagine dallo specchio; La dimensione trasversale di un oggetto risulta in generale diverso dall’originale. L’ingrandimento trasversale m è dato dalla relazione: (Dim: vedere pagina precedente)

41 41 Lenti sottili Una lente è un oggetto trasparente con due superfici rifrangenti i cui assi centrali coincidono. Se i raggi sono inizialmente paralleli all’asse ed essa li fa convergere, essa è detta convergente. Nel caso contrario, è detta divergente. Una lente produce una immagine perché flette i raggi; può flettere i raggi solo se il suo indice di rifrazione n è diverso da quello dell’ambiente che la circonda

42 42 Immagini create da lenti sottili L’immagine reale si forma dalla parte opposta rispetto l’oggetto; l’immagine reale si forma dalla stessa parte rispetto l’oggetto; Nel caso di lente sottile (spessore piccolo rispetto a p ed i), si può dimostrare che la relazione tra posizione dell’oggetto p e immagine i è:

43 43 Lente d’ingrandimento L’occhio può mettere a fuoco sulla retina un oggetto con precisione se questo si trova tra una distanza molto grande e un “punto prossimo”. Se l’oggetto è più vicino del punto prossimo, l’immagine è sfocata. La lente convergente permette permette di avere l’immagine di un oggetto più lontana, ad un angolo  ’ maggiore L’ingrandimento angolare m  Poiché (a): Ed inoltre: Si ha:

44 44 Microscopio Un microscopio è un dispositivo composto da due lenti convergenti; ingrandisce in maniera significativa oggetti di piccole dimensioni. Consiste di un obiettivo, con distanza focale f ob, e di un oculare con distanza focale f oc

45 45 Microscopio L’oggetto da osservare viene posto appena più lontano del primo punto focale dell’obiettivo, in maniera tale che p  f La distanze tra le lenti viene regolata in maniera che l’immagine ingrandita, capovolta e reale si formi vicino al fuoco dell’oculare Poiché l’ingrandimento della lente corrisponde a: m=-i/p; Chiamando s la distanza tra il secondo fuoco dell’obiettivo, e il primo dell’oculare: L’immagine è collocata all’interno del punto focale F 1 ’ dell’oculare, che funge da lente di’ingrandimento e procuce una immagine I’, virtuale. L’ingrandimento complessivo dello strumento è dato quindi

46 Interferenza

47 47 Luce: onde o corpuscoli? Le leggi dell’ottica geometrica utilizzano l’assunzione che la luce si propaghi in linea retta, come un proiettile (teoria corpuscolare, principale sostenitore: Newton) Nel 1678, Huygens per primo avanzò una teoria ondulatoria della luce La teoria spiega le leggi della riflessione, rifrazione e prevede i fenomeni dell’interferenza e della diffrazione. Principio di Huygens: tutti i punti di un fronte d’onda fungono da sorgenti di onde elementari sferiche secondarie. Dopo un tempo t, la nuova posizione del fronte sarà la tangente superficiale a queste onde secondarie.

48 48 La legge della rifrazione Assumiamo che la luce sia un onda di lunghezza 1 nel mezzo 1. Si assumono inoltre velocità dell’onda differenti nei due mezzi 1 e 2. Il tempo ( 1 /v 1 ) per percorrere il tratto “ec” deve essere uguale al tempo ( 2 /v 2 ) per percorrere il tratto “hg”. Uguagliando i tempi: Considerando i triangoli hce e hcg si ha: da cui: avendo definito l’indice di rifrazione n=c/v

49 49 Esperimento sull’interferenza Nel 1801 T. Young fornì la prima prova determinate sulla natura ondulatoria della luce, mostrando che esse potevano interferire. Interferenza di onde in acqua Schema di un possibile esperi- mento d’interferenza di luce Figura di max e min d’interferenza

50 50 Posizione dei max e min d’interferenza Le onde in S1 e S2 hanno la stessa fase (hanno max o minimo allo stesso istante di tempo). Quando arrivano in P possono avere fase diversa a causa della differenza di cammino  L. Ciò che accade in ciascun punto dello schermo è determinato dalla differenza di cammino  L dei raggi che arrivano nel punto

51 51 Posizione dei max e min d’interferenza Se  L =0, allora i due raggi arriverebbero esattamente nel punto esattamente presentando la stessa intensità del campo E (in fase); Perché la funzione che descrive il campo E è una funzione armonica che riassume lo stesso valore dopo un numero intero di lunghezze d’onda, la condizione perché le onde siano in fase diviene:  L = m, Esercizio: Considerate una luce gialla monocromatica con  nm. Sullo schermo, distante D=55 cm, la distanza tra due massimi consecutivi è  y= 2.5 mm. Determinare la distanza tra le fenditure. [R: 0.12 mm] Si noti che le figure d’interferenza permettono di stimare piccole distanze, nel caso dell’esercizio tra due fenditure.

52 52 Intensità dei max d’interferenza Possiamo calcolare il valore dell’intensità luminosa nei max d’interferenza. [Ricordate da cosa dipende l’intensità di un’onda EM?] La prima onda trasporta un campo elettrico pari a: La seconda onda trasporta un campo elettrico pari a: dove  è la fase relativa dovuto alla differenza di cammino. Usiamo la convenzione detta dei vettori di fase. La somma dei due vettori fornisce un nuovo vettore di modulo pari a (notate in figura che  ) L’intensità dell’onda EM dipende dal quadrato del campo elettrico risultante, per cui:

53 53 Intensità dei max d’interferenza Gli strumenti ottici (tra cui i nostri occhi) sono degli strumenti sensibili talvolta a valori medi. Se le frange sono sufficientemente distanti, noi osserviamo massimi e minimi. I max hanno intensità “1+1=4”, mentre i minimi hanno “1+1=0” Tuttavia, se le frange sono troppo vicine, noi mischiamo i max e min, mediando la funzione, per cui abbiamo la “familiare” versione “1+1=2”

54 Diffrazione

55 55 Differenza tra interferenza e diffrazione? Nessuna differenza! Si tratta dello stesso fenomeno fisico. Semplicemente, nella Diffrazione si assume che le possibili sorgenti che interferiscono tra di loro siano molto numerose. Normalmente, non vediamo figure di diffrazione perché la luce visibile bianca non è coerente. La luce bianca può essere scomposta nei suoi “colori fondamentali” usando un prisma, e sfruttando il fatto che il valore dell’indice di rifrazione cambia al variare della frequenza della radiazione (dispersione cromatica)

56 56 Minimi di diffrazione Si puo’ facilmente mostrare che la condizione perché le onde siano in controfase (=distruttive) è che la differenza di cammino ottico: Minimi di diffrazione

57 57 Intensità della diffrazione Il calcolo dell’intensità della figura di D dovuta ad una singola fenditura è piuttosto complicato, e dipende dal valore della larghezza “a” dell’apertura e dalla lunghezza d’onda della radiazione incidente.

58 58 Diffrazione attraverso un foro circolare E’ un caso interessante, perché è quello a cui si può ricondurre quello di una lente d’ingrandimento o obiettivo di microscopio. La figura di D. prodotta da una apertura circolaredi diametro “d” mostra dei massimi che si distribuiscono ad anello. Il primo minimo è: La formula è importante quando si vogliono risolvere, ossia distinguere, due oggetti puntiformi lontani la cui distanza angolare è piccola. Il criterio di Raylaigh permette di decidere se due oggetti sono risolvibili, quando la distanza angolare delle 2 sorgenti è tale che il massimo centrale della 1a sorgente coincida col primo minimo della figura di diffrazione. Secondo tale criterio i due oggetti devono essere separati

59 59 Potere risolutivo Foto: immagini di stelle ottenute con telescopi. Nel primo caso (a) sono così vicine che non si possono risolvere, mentre in (c) la loro separazione soddisfa il criterio di Rayleigh

60 60 Interferenza/diffrazione da 2 fenditure (a) Intensità delle frange d’interferenza che verrebbero prodotte da due fenditure di larghezza molto piccola. (b) Intensità per la figura di D. da una fenditura di larghezza “d” (c) Intensità delle frange d’interferenza formate da 2 fenditure di larghezza “d”.

61 61 Reticoli di diffrazione Uno degli strumenti più utili è il reticolo di diffrazione. E’ un dispositivo dotato di un numero N molto grande di incisioni, che possono essere anche migliaia/mm Si ha un massimo d’intensità se: I raggi uscenti dalle fenditure di un reticolo hanno differenza di cammino pari a: dsin  Andamento dell’intensità prodotta da un reticolo di diffrazione con molte fenditure. Le frange chiare su uno schermo si chiamano righe. Il valore di m si chiama ordine,

62 62 Diffrazione dei raggi X I raggi X sono radiazioni EM aventi lunghezza d’ordine dell’ordine di  0.1 nm ( m), ossia  5000 volte più piccole del visibile. Vengono prodotti quando elettroni di alta energia emessi da un filamento F vengono frenati da un bersaglio Perché i RX vengano diffratti, occorre un reticolo che abbia un “passo” dell’ordine della lunghezza d’onda, ossia di circa ( m); questa corrisponde alla distanza tra i nuclei atomici in un reticolo cristallino! I RX servono per studiare la struttura tridimensionale dei cristalli. Quando i RX colpiscono un cristallo, i raggi vengono diffusi dal cristallo stesso: in alcune direzioni, si ha una interferenza costruttiva/distruttiva delle onde, generando massimi/minimi d’intensità

63 63 Diffrazione dei raggi X Si può considerare che i max siano il risultato di diffusione da parte di piani di riflessione paralleli (o piani cristallini), costituiti da atomi del cristallo stesso. Ad es. nel caso di NaCl la distanza interplanare d funge da passo del reticolo Si noti che la diffe- renza di cammino è Legge di Bragg

64 64 Cristallografia a raggi X La cristallografia a raggi X è una tecnica della cristallografia in cui l'immagine, prodotta dalla diffrazione dei raggi X attraverso lo spazio del reticolo atomico in un cristallo, viene registrata e quindi analizzata per rivelare la natura del reticolo. In genere, questo porta a determinare il materiale e la struttura molecolare di una sostanza. Lo spazio nel reticolo cristallino può essere determinato con la legge di Bragg. Gli elettroni che circondano gli atomi, piuttosto che i nuclei degli atomi stessi, sono le particelle che interagiscono fisicamente con i fotoni dei raggi X. Questa tecnica è ampiamente usata in chimica e biochimica per determinare le strutture di un'immensa varietà di molecole, compresi composti inorganici, DNA e proteine. La diffrazione dei raggi X è comunemente eseguita con singoli cristalli o, laddove essi non siano presenti, con prove costituite da polvere microcristallina del materiale. L’analisi della diffrazione della polvere microcristallina richiede una differente apparecchiatura, fornisce meno informazioni ed è meno chiara..

65 65 Raccolta dei dati di diffrazione

66 66 Diffrazione di oggetti semplici

67 67 Reticoli di oggetti più complessi

68 68 Altri reticoli e loro pattern di diffrazione


Scaricare ppt "1 per Scienze Geologiche prof. Maurizio Spurio Parte 3."

Presentazioni simili


Annunci Google