La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

MASSIMIZZAZIONE DEL PROFITTO DI UNA IMPRESA di Elvira Daddario.

Presentazioni simili


Presentazione sul tema: "MASSIMIZZAZIONE DEL PROFITTO DI UNA IMPRESA di Elvira Daddario."— Transcript della presentazione:

1 MASSIMIZZAZIONE DEL PROFITTO DI UNA IMPRESA di Elvira Daddario

2 Obiettivi dell’impresa Uno dei principali obiettivi di un’impresa che produce uno o più beni è quello di determinare il livello di produzione dei singoli beni per massimizzare il profitto

3 L’impresa può trovarsi ad operare in… Mercato di libera concorrenza Monopolio Oligopolio Produzione di più beni venduti in mercati diversi Produzione di un unico bene venduto in mercati diversi

4 Le funzioni economiche principali Indichiamo con R la funzione ricavo Indichiamo con C la funzione costo Il profitto è allora espresso da P=R-C

5 Il concetto di ricavo Il ricavo R è dato da: R=p*q p = prezzo di vendita del bene q= quantità del bene

6 Il concetto di costo I costi all’interno di un’azienda si dividono principalmente in Costi fissi e Costi variabili CT=Cv*q+CF C v =costi variabili unitari q=quantità prodotta del bene C F =costi fissi

7 Il concetto di profitto Il profitto è dato dalla differenza fra ricavi e costi. P=R-C Quindi considerando le uguaglianze precedenti e ipotizzando la produzione di un solo bene, avremo che: P=(p*q)-[(C v *q)+C F ]

8 Massimizzazione del profitto Per trovare i punti di massimo e di minimo di una funzione utilizziamo le derivate. Anche per trovare la massimizzazione del profitto si ricorre alle derivate.

9 Massimo profitto di un’impresa che produce due prodotti e li vende in condizioni di concorrenza perfetta Un’impresa produce due prodotti q 1 e q 2 e li vende in un mercato di libera concorrenza ai prezzi p 1 e p 2, i quali, essendo il mercato di libera concorrenza, sono fissi, indipendenti dalla quantità richiesta.

10 Massimo profitto di un’impresa che produce due prodotti e li vende in condizioni di concorrenza perfetta La funzione ricavo risulta: Supponiamo che la funzione dei costi congiunti di produzione dei due beni sia: La funzione profitto sarà allora:

11 Le derivate parziali Trovandoci di fronte a due variabili, q 1 e q 2 è necessario ricorrere alle derivate parziali. DEFINIZIONE: La derivata parziale in un punto rispetto alla prima variabile di una funzione in x e y rappresenta la pendenza della curva ottenuta intersecando il grafo di f (una superficie contenuta nello spazio R 3 ) con un piano passante per il punto parallelo al piano y=0.

12 Esercizio Un’impresa produce due beni sostenendo un costo complessivo dato da: Vende i due beni in un mercato di concorrenza perfetta ai prezzi p 1 =1300 e p 2 =1700. Determinare per quale livello di produzione l’impresa realizza il massimo profitto.


Scaricare ppt "MASSIMIZZAZIONE DEL PROFITTO DI UNA IMPRESA di Elvira Daddario."

Presentazioni simili


Annunci Google