La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Esercitazione finale Esercizi numerici Istituzioni di Economia Politica II Mario Menegatti.

Presentazioni simili


Presentazione sul tema: "Esercitazione finale Esercizi numerici Istituzioni di Economia Politica II Mario Menegatti."— Transcript della presentazione:

1 Esercitazione finale Esercizi numerici Istituzioni di Economia Politica II Mario Menegatti

2 Mercato dei beni C = ,4∙Y D I = 800 – 5000∙i + 0,1∙Y G = 1000 T = 1000 Mercato della moneta M D = 0,4∙Y ∙i M S /P = 1600 Esercizio 1

3 a)Si determino i valori di equilibrio di reddito, tasso di interesse, consumo ed investimento; b)Si assuma che la Banca Centrale riduca l’offerta di moneta, portandone il livello a Si determini il nuovo livello del reddito di equilibrio e si descrivano e commentino gli effetti prodotti da una manovra di questo genere sui valori di equilibrio di reddito, tasso di interesse, consumi ed investimenti Esercizio 1

4 Soluzione dell’esercizio, punto a) Equilibrio mercato dei beni  Y=Z Ricordo: Z=C+I+G e sostituendo C, I, G e T si ottiene: Z=1200+0,4(Y-1000)+800+0,1Y-5000i+1000 Z=2600+0,5Y-5000 ·i Soluzione punto a) dell’esercizio 1

5 La curva IS si deriva eguagliando Z a Y (equilibrio sul mercato dei beni) La curva IS si deriva eguagliando Z a Y (equilibrio sul mercato dei beni) Z = ,5Y-5000·i = Y (1-0,5)Y = ,5Y-5000·i E quindi: Y = ·i IS Soluzione punto a) dell’esercizio 1

6 2) Equazione curva LM M D = 0,4Y ·i e M S /P = 1600 Equilibrio mercati finanziari  M S /P = M D 1600 = 0,4Y-16000·i Esprimiamo i in funzione di Y (i=g(Y)) Esprimiamo i in funzione di Y (i=g(Y)) i = 0,4/16000Y− 1600/16000 = 0,4/16000Y – 1/10 Soluzione punto a) dell’esercizio 1

7 3) Mettiamo a sistema le due equazioni IS  Y = ·i LM  i = 0,4/16000·Y – 1/10 Soluzione punto a) dell’esercizio 1

8 Sostituiamo i dalla LM nella IS Y E = 5200 – 10000·[0,4/16000·Y E – 1/10] = = 5200 – 0,25·Y E = 5200 – 0,25·Y E da cui (1 + 0,25)·Y E = Y E = 6200/1,25 = 4960 Soluzione punto a) dell’esercizio 1

9 4) Sostituiamo Y E nella LM LM  i E = (0,4/16000)·Y E − 1/10 Sostituendo Y E i E = (0,4/16000)·4960 – 1/10 = 0,024  2,4% Soluzione punto a) dell’esercizio 1

10 Equilibrio: Y E = 4960 i E = 2,4% i E = 2,4% Ed inoltre, C E = ,4Y E – 400 = = 2784 I E = ,1Y E i E = = I E = ,1Y E i E = = 1176

11 Equilibrio sul mercato dei beni e della moneta i Y LM IS YEYE iEiE E

12 Soluzione punto b) dell’esercizio 1 M S /P M S /P  1600  1200 non compare nella curva IS  IS non varia IS :Y = ∙i

13 M S /P  LM va verso sinistra M S /P  LM va verso sinistra Calcolo della nuova curva LM 1200 = 0,4∙Y-16000∙i Quindi i = 0,4/16000∙Y /16000 = 0,4/16000∙Y - 3/40 Soluzione punto b) dell’esercizio 1

14 A questo punto, sostituisco la nuova LM nella IS: Y= i= (0,4/16000∙Y - 3/40) Risolvendo i conti ottengo che Y E ’=4760 Da cui derivo il nuovo i E’ i E’ = 0,4/16000∙Y /16000 = 0,4/16000∙ /40 = 0,044 = 4,4% Soluzione punto b) dell’esercizio 1

15 Y E ’ = 4760 i E ’ = 4,4% Ed inoltre: C E ’ = 2704 I E ’ = 1056

16 i Y LM IS YEYE iEiE M S /P M S /P iE’iE’ LM’ Y E’ Soluzione punto b) dell’esercizio 1 E E’

17 Consideriamo un’economia caratterizzata dalle seguenti equazioni: C = ,4·Y D I = 3000 – 5000·i + 0,1·Y G = 2500 T = 2650 i = 2·i r i r = 2% Esercizio 2

18 a) a)Si calcoli l’equilibrio iniziale (Y E, i E, C E, I E ) b) b)Si assuma che il Governo riduca il livello della tassazione a 2500 in modo da riportare in pareggio il bilancio pubblico. Quale variazione del tasso di interesse di riferimento deve essere effettuata per mantenere il reddito di equilibrio al livello precedente, dato il nuovo livello di tassazione? Esercizio 2

19 Soluzione punto a) dell’esercizio 2 Soluzione del punto a): RICORDARE: 1) Determinare la curva IS imponendo Y = Z. Per comodità, si esprime Y=f(i) 2) Determinare i sulla base della relazione i=g(ir) 3) Sostituire i nella IS e determinare Y di equilibrio

20 Calcolo della domanda aggregata: Z = C + I + G Sostituendo le equazioni ed i valori di C, I, G e T otteniamo Z = ,4·(Y − 2650) ,1·Y − 5000·i = Z = ,5·Y – 5000·i Soluzione punto a) dell’esercizio 2

21 Si impone Y=Z e esprimendo Y in funzione di i (nella forma Y=f(i)) si ha (1 – 0,5)∙Y = 6940 – 5000·i e quindi Y = 6940/0,5 – 5000·i/0,5 = – 10000·i IS Soluzione punto a) dell’esercizio 2

22 Calcolando i sulla base della relazione con i r (NB: siamo nel caso IS-MP!): i= 2·i r = 2·0,02 = 0,04 = 4% Da cui: Y = ·0,04 = Soluzione punto a) dell’esercizio 2

23 L’equilibrio è quindi caratterizzato dai seguenti valori: Y E = i E = 4% Ed inoltre: C E = ,4( )=6832 I E = ·0, ·0,01= 4148 Soluzione punto a) dell’esercizio 2

24 Gli obiettivi della manovra esaminata sono: 1) Avanzo G−Τ = 0 (tramite la riduzione di T) 2) Y E ’ = In particolare: Avanzo Τ-G = =150, quindi la nuova T che annulla l’avanzo è: T=2500 Soluzione punto b) dell’esercizio 2

25 I dati del problema sono i valori di Y, T e G mentre le incognite sono i e i r. Quindi vado a riscrivere la curva IS con il nuovo valore di T, mantenendo però il valore del reddito di equilibrio che ho trovato nel punto a) dell’esercizio (Y E =13480). Fatto questo, trovo i che uso poi per calcolare i r. Soluzione punto b) dell’esercizio 2

26 Scriviamo la curva IS: Y = Z = C + I + G Utilizzando le equazioni dell’esercizio abbiamo Z = ,4(Y-2500) ,1Y − 5000·i Y= Z = ,4Y − ,1Y − 5000·i Soluzione punto b) dell’esercizio 2

27 Sostituendo i valori obiettivo di Y, G e T otteniamo: 13480= ,4·13480 − ,1·13480 − 5000·i Da cui = − 10000·i Risolvendo per i ottengo i = 0,052 = 5,2% Soluzione punto b) dell’esercizio 2

28 La relazione fra i tassi i = 2·i r implica che i r =0,052/2 = 0,026 →2,6% Per annullare l’avanzo senza aumentare il prodotto è necessario aumentare il tasso di interesse di riferimento portandolo dal 2% al 2,6% Soluzione punto b) dell’esercizio 2

29 i Y IS’ YEYE i E’ iEiE IS MP’ MP irir Soluzione punto b) dell’esercizio 2 E’ E

30 Curva di Phillips: misura il trade-off (effetto di sostituzione) tra inflazione e disoccupazione Mostra una relazione negativa fra  la variazione dell’inflazione  la distanza della disoccupazione dal tasso naturale Curva di Phillips: ripasso

31 Dato il “trade-off ” (effetto di sostituzione) fra l’obiettivo inflazionistico e l’obiettivo occupazionale, le autorità di politica economica vogliono: Dato il “trade-off ” (effetto di sostituzione) fra l’obiettivo inflazionistico e l’obiettivo occupazionale, le autorità di politica economica vogliono:  Mantenere la disoccupazione sotto il livello naturale  Ridurre l’inflazione Curva di Phillips: ripasso

32

33 Trade off fra inflazione e disoccupazione: Trade off fra inflazione e disoccupazione:  Mantenere u t al di sotto di u n  Costo in termini di  t   t  crescente)  Ridurre  t  Costo in termini di u t (u t >u n ) Costo in termini di u t (u t >u n ) Miglioramento per un obiettivo implica un costo per l’altro Miglioramento per un obiettivo implica un costo per l’altro

34 Curva di Phillips: Esercizio 3 Assumiamo che un’economia si caratterizzata dalla curva di Phillips Assumiamo che un’economia si caratterizzata dalla curva di Phillips Al tempo t-1 abbiamo: Al tempo t-1 abbiamo:   L’esercizio è composto da 5 quesiti: L’esercizio è composto da 5 quesiti: a) Calcolare il livello di disoccupazione naturale (u n )

35 Esercizio 3 punto a) a) Quale è il valore della disoccupazione naturale u n ? Per calcolare u n partiamo dalla curva di Phillips Per calcolare u n partiamo dalla curva di Phillips Sappiamo che al tasso di disoccupazione naturale corrisponde un tasso di inflazione nullo ossia:  t =  t E e quindi  t =  t-1 Sappiamo che al tasso di disoccupazione naturale corrisponde un tasso di inflazione nullo ossia:  t =  t E e quindi  t =  t-1 Otteniamo quindi che: Otteniamo quindi che: 

36 Esercizio 3 punto b) b) Si assuma che le autorità di politica economica vogliano portare l’inflazione a 0 e decidano di ridurre l’inflazione di 6 punti percentuali al tempo t. Si descrivano gli effetti di tale decisione sulla disoccupazione al t, t+1, t+2 e t+3. L’inflazione è in t-1 al 6%. Le autorità di politica economica vogliono portarla a 0. Le autorità decidono di ridurre l’inflazione interamente in un periodo: la strategia è quella della “doccia fredda” L’inflazione è in t-1 al 6%. Le autorità di politica economica vogliono portarla a 0. Le autorità decidono di ridurre l’inflazione interamente in un periodo: la strategia è quella della “doccia fredda” Cosa accade alla disoccupazione? Cosa accade alla disoccupazione?

37 Esercizio 3 punto b) Tempo t Tempo t Sappiamo che: Sappiamo che:   t-1 = 6%   t = 0% (La strategia della doccia fredda annulla immediatamente l’inflazione!) Abbiamo quindi: Abbiamo quindi:

38 Esercizio 3 punto b) Tempo t+1 Tempo t+1 Sappiamo che: Sappiamo che:   t = 0%, quindi:   t+1 = 0 Abbiamo quindi: Abbiamo quindi:

39 Esercizio 3 punto b) Tempo t+2 Tempo t+2 Sappiamo che: Sappiamo che:   t+1 = 0%, quindi:   t+2 = 0 Abbiamo quindi: Abbiamo quindi:

40 Esercizio 3 punto b) Tempo t+3 Tempo t+3 Si ripetono le stesse condizioni del tempo t+1 e t+2, quindi Si ripetono le stesse condizioni del tempo t+1 e t+2, quindi Il costo di ridurre l’inflazione è pari ad un periodo, durante il quale la disoccupazione aumenta dal 4% al 6% Il costo di ridurre l’inflazione è pari ad un periodo, durante il quale la disoccupazione aumenta dal 4% al 6%

41 Esercizio 3 punto c) c) Ridurre gradualmente l’inflazione Si assuma che le autorità di politica economica vogliano portare l’inflazione a zero e decidano di ridurre l’inflazione di due punti percentuali al tempo t, di due punti percentuali al tempo t+1 e di due punti percentuali al tempo t+2. Si descrivano gli effetti di tale decisione sulla disoccupazione in t, t+1, t+2 e t+3. Si assuma che le autorità di politica economica vogliano portare l’inflazione a zero e decidano di ridurre l’inflazione di due punti percentuali al tempo t, di due punti percentuali al tempo t+1 e di due punti percentuali al tempo t+2. Si descrivano gli effetti di tale decisione sulla disoccupazione in t, t+1, t+2 e t+3. Strategia del gradualismo Strategia del gradualismo

42 Esercizio 3 punto c) Tempo t Tempo t Sappiamo che: Sappiamo che:   t-1 = 6%   t = 4% (La strategia del gradualismo prevede che la inflazione venga di periodo in periodo ridotta del 2%!) Abbiamo quindi: Abbiamo quindi:

43 Esercizio 3 punto c) Tempo t+1 Tempo t+1 Sappiamo che: Sappiamo che:   t = 4%, quindi:   t+1 = 2% (sempre per il gradualismo) Abbiamo quindi: Abbiamo quindi:

44 Esercizio 3 punto c) Tempo t+2 Tempo t+2 Sappiamo che: Sappiamo che:   t+1 = 2%, quindi:   t+2 = 0 (ancora una volta si riduce del 2%, raggiungendo così il valore obiettivo) Abbiamo quindi: Abbiamo quindi:

45 Esercizio 3 punto c) Tempo t+3 Tempo t+3 Sappiamo che: Sappiamo che:   t+2 = 0%, quindi:   t+3 = 0 (il valore obiettivo è stato raggiunto) Abbiamo quindi: Abbiamo quindi:

46 Esercizio 3 punto d) d) Si confrontino le conseguenze delle due manovre specificandone vantaggi e svantaggi d) Si confrontino le conseguenze delle due manovre specificandone vantaggi e svantaggi Confrontando le due strategie notiamo che: Confrontando le due strategie notiamo che:  riduzione immediata o doccia fredda (  6% in t)  costi reali più alti ma più temporanei: aumento della disoccupazione dal 4% al 6% per un periodo costi reali più alti ma più temporanei: aumento della disoccupazione dal 4% al 6% per un periodo  riduzione graduale (  2% in t e  2% in t+1 e ancora  2% in t+2)  costi reali meno alti ma perdurano di più dato che la disoccupazione sta per tre periodi al di sopra del 4% (tasso di disoccupazione naturale)

47 Graficamente: Doccia fredda  un periodo nel punto B; Doccia fredda  un periodo nel punto B; Gradualismo  tre periodi nel punto C; Gradualismo  tre periodi nel punto C;

48 Esercizio 3 punto e) e) Si assuma ora che, data la situazione iniziale, le autorità di politica economica vogliano portare al tempo t la disoccupazione al 3,5% e mantenerla costante a quel livello. Si descrivano gli effetti sull’inflazione di tale decisione al tempo t, t+1, t+2. e) Si assuma ora che, data la situazione iniziale, le autorità di politica economica vogliano portare al tempo t la disoccupazione al 3,5% e mantenerla costante a quel livello. Si descrivano gli effetti sull’inflazione di tale decisione al tempo t, t+1, t+2. Ricordo che Ricordo che   -1 = 6%   -1 = 6% u t = 3,5% u t = 3,5% Si ottiene quindi:

49 Esercizio 3 punto e) Tempo t+1 Tempo t+1 Ricordo che Ricordo che   = 7,5%   = 7,5% u t+1 = 3,5% u t+1 = 3,5% Si ottiene quindi:

50 Esercizio 3 punto e) Tempo t+2 Tempo t+2 Ricordo che Ricordo che   = 9%   = 9% u t+2 = 3,5% u t+2 = 3,5% Si ottiene quindi:

51 Ripasso Il modello di Solow vede il processo di accumulazione del capitale come una delle fonti principali della crescita. Il modello di Solow vede il processo di accumulazione del capitale come una delle fonti principali della crescita. In particolare: In particolare: Y t = F(K t,N t ) ovvero Y/N = f(K/N), dove al crescere di K/N cresce Y/N dove al crescere di K/N cresce Y/N Il processo però non è infinito ma è destinato ad arrestarsi una volta giunti al punto di stato stazionario Il processo però non è infinito ma è destinato ad arrestarsi una volta giunti al punto di stato stazionario Ricordo inoltre che: Ricordo inoltre che: K t+1 = K t – δK t + I t, dove I t = sY t

52 Esercizio 4 Si assuma che una economia presenti le seguenti caratteristiche: Si assuma che una economia presenti le seguenti caratteristiche: Funzione di produzione: Saggio di risparmio: s=0,3 Tasso di deprezzamento del capitale:  =0,07 Capitale iniziale per lavoratore (nel periodo 0) Si assumano forze di lavoro costanti ed assenza di progresso tecnico e si consideri un modello di crescita di tipo neoclassico.

53 Esercizio 4 punto a) Calcolare il tasso di crescita di K/N e di Y/N? Calcolare il tasso di crescita di K/N e di Y/N? Sappiamo che Sappiamo che Ciò implica che Ciò implica che Quindi: Quindi:

54 Esercizio 4 punto a) Inoltre, sapendo che Inoltre, sapendo che Abbiamo Abbiamo

55 Esercizio 4 punto a) La crescita percentuale di Y/N sarà quindi La crescita percentuale di Y/N sarà quindi La crescita percentuale di Y/N sarà del 0,03% La crescita percentuale di Y/N sarà del 0,03% Il tasso di crescita molto basso indica che siamo molto vicini al punto di stato stazionario! Il tasso di crescita molto basso indica che siamo molto vicini al punto di stato stazionario!

56 Esercizio 4 punto b) b) Si determini il livello massimo raggiunto dal capitale per lavoratore e prodotto per lavoratore Sappiamo che raggiunto lo stato stazionario l’accumulazione di capitale cessa Sappiamo che raggiunto lo stato stazionario l’accumulazione di capitale cessa Perciò il livello massimo di K/N e Y/N si raggiunge in stato stazionario (K*/N e Y*/N) Perciò il livello massimo di K/N e Y/N si raggiunge in stato stazionario (K*/N e Y*/N) Quindi in stati stazionario: Quindi in stati stazionario: investimento = deprezzamento I= 

57 Esercizio 4 punto b) Considerati i nostri dati, in stato stazionario: Considerati i nostri dati, in stato stazionario: Quindi: Quindi:

58 Esercizio 4 punto b) Elevo entrambi i lati al quadrato Elevo entrambi i lati al quadrato Date le opportune semplificazioni: Date le opportune semplificazioni: Il livello massimo raggiunto da K/N è 18,37 Il livello massimo raggiunto da K/N è 18,37

59 Esercizio 4 punto b) Quale è il livello massimo di Y/N? Quale è il livello massimo di Y/N? Sapendo che Sapendo che Abbiamo Abbiamo Il livello massimo raggiunto da Y/N è 4,29 Il livello massimo raggiunto da Y/N è 4,29

60 Graficamente  Il livello massimo è raggiunto in stato stazionario  punto E Graficamente  Il livello massimo è raggiunto in stato stazionario  punto E K*/N =18,37 Y*/N=4,29 K*/N =18,37 Y*/N=4,29 Y/N K/N 0,3(K/N) 1/2  K/ N (K/N) 1/2 18,37 4,29 E

61 Esercizio 4 punto c) Quale è il livello massimo di K/N e di Y/N quando il saggio di risparmio aumenta a 0,35? Quale è il livello massimo di K/N e di Y/N quando il saggio di risparmio aumenta a 0,35? Sapendo che Sapendo che Ed inoltre che Ed inoltre che E quindi, il livello massimo raggiunto da Y/N è 5 E quindi, il livello massimo raggiunto da Y/N è 5

62 Esercizio 4 punto c) La nuova accumulazione di capitale fa riprendere la crescita, fino al raggiungimento del nuovo stato stazionario; La nuova accumulazione di capitale fa riprendere la crescita, fino al raggiungimento del nuovo stato stazionario; Un aumento del saggio di risparmio genera quindi una nuova fase di crescita temporanea Un aumento del saggio di risparmio genera quindi una nuova fase di crescita temporanea Un aumento del saggio di risparmio non genera una crescita illimitata Un aumento del saggio di risparmio non genera una crescita illimitata Solo il progresso tecnico genera crescita nello stato stazionario Solo il progresso tecnico genera crescita nello stato stazionario

63  s  Curva sf(K/N) verso l’alto  s  Curva sf(K/N) verso l’alto Nuovi livelli di stato stazionario K*’/N=25 Y*’/N=5 Nuovi livelli di stato stazionario K*’/N=25 Y*’/N=5 Y/N K/N 0,3(K/N) 1/2  K/ N (K/N) 1/2 18,37 4,29 E 0,35(K/N) 1/ E’

64 Economia aperta Ripasso Non consideriamo il mercato della moneta e per semplicità prendiamo quindi il tasso di interesse come dato. In realtà, numerosi fattori influenzano il tasso di interesse, come il tasso d’interesse prevalente sui mercati finanziari mondiali o le aspettative sull’andamento del tasso di cambio nazionale Non consideriamo il mercato della moneta e per semplicità prendiamo quindi il tasso di interesse come dato. In realtà, numerosi fattori influenzano il tasso di interesse, come il tasso d’interesse prevalente sui mercati finanziari mondiali o le aspettative sull’andamento del tasso di cambio nazionale Inoltre, nella IS compare un nuovo termine: le esportazioni nette (NX) Inoltre, nella IS compare un nuovo termine: le esportazioni nette (NX) Bilancia Commerciale = Esportazioni nette = Esportazioni – (Importazioni / Tasso di Cambio) Bilancia Commerciale = Esportazioni nette = Esportazioni – (Importazioni / Tasso di Cambio) NX = X - IM/e NX = X - IM/e NX=0  Pareggio della bilancia commerciale NX=0  Pareggio della bilancia commerciale NX>0  Avanzo commerciale NX>0  Avanzo commerciale NX<0  Disavanzo commerciale NX<0  Disavanzo commerciale

65 Esercizio 4 I dati del problema: C = ,6·Y d C = ,6·Y d I = ,1·Y – 5000·i I = ,1·Y – 5000·i G=2500 G=2500 T= 1000 T= 1000 i= 0,15 i= 0,15 X= ,2·Y* - 250·  X= ,2·Y* - 250·  IM= ,16·Y + 100·  IM= ,16·Y + 100·   = 0,8  = 0,8 Y*= Y*= 60000

66 Esercizio 4, punto a) a) Si calcolino i valori di equilibrio di: reddito consumo, investimento, esportazioni e importazioni ed il saldo della bilancia commerciale a) Si calcolino i valori di equilibrio di: reddito consumo, investimento, esportazioni e importazioni ed il saldo della bilancia commerciale Ricordo: in questo caso non ho la LM! Ricordo: in questo caso non ho la LM! Mi concentro quindi solo sulla IS Mi concentro quindi solo sulla IS NX=X-IM/  dove  è il tasso di cambio reale effettivo NX=X-IM/  dove  è il tasso di cambio reale effettivo

67 Esercizio 4 - passaggi 1.Si definisce ZZ = Domanda aggregata di beni nazionali. 2.Si impone Y = ZZ; condizione di equilibrio sul mercato dei beni  produzione(offerta) = domanda 3.Si calcola Y E 4.Si calcolano C E, I E, X E, IM E e NX E

68 Esercizio 4 punto a) 1.Si definisce ZZ = Domanda aggregata di beni nazionali ZZ= C + I + G + NX = C+I+G+ X - IM/  C = ,6·Y d = C = ,6·Y d = ,6Y - 0,6·1000 = ,6Y ,6Y - 0,6·1000 = ,6Y I = ,1·Y – 5000·i = · 0,15 + 0,1Y = 1700 – ,1·Y = ,1·Y I = ,1·Y – 5000·i = · 0,15 + 0,1Y = 1700 – ,1·Y = ,1·Y

69 Esercizio 4 punto a) 1.Si definisce ZZ = Domanda aggregata di beni nazionali ZZ= C + I + G + NX = C+I+G+ X - IM/  X = ,2·Y * -250·  = X = ,2·Y * -250·  = ,2 · ·0,8 = = N.B. non dipendono da Y! ,2 · ·0,8 = = N.B. non dipendono da Y! IM/  =1200/0,8 + 0,16/0,8Y+100·0,8/0,8= ,2Y+100= ,2Y IM/  =1200/0,8 + 0,16/0,8Y+100·0,8/0,8= ,2Y+100= ,2Y

70 Esercizio 4 punto a) 1.A questo punto possiamo direttamente calcolare le esportazioni nette: NX = X - IM/  = – 1600 – 0,2Y = ,2·Y NX = X - IM/  = – 1600 – 0,2Y = ,2·Y Ora possiamo procedere sostituendo le funzioni di consumo, investimento ed esportazioni nette direttamente nella ZZ. Ricordiamo che Ora possiamo procedere sostituendo le funzioni di consumo, investimento ed esportazioni nette direttamente nella ZZ. Ricordiamo che ZZ = C + I + G + NX = C+I+G+NX ZZ = C + I + G + NX = C+I+G+NX ZZ = Y  IS ZZ = Y  IS

71 Esercizio 4 punto a) Sostituendo e uguagliando a Y  IS = ,6Y ,1Y ,2Y Y E = 0,5Y E Da cui: Y E = 16850/0,5 = 33700

72 Esercizio 4 punto a) E quindi: C E = ,6Y E = ,6·33700 = I E = ,1Y E = ,1·33700 = 4320 NX E = ,2Y E = – 0,2·33700 = 5640 > 0

73 Esercizio 4 punto b Si assuma che il prodotto estero si riduca passando a Si determino i nuovi valori di equilibrio di produzione ed esportazioni nette. Si assuma che il prodotto estero si riduca passando a Si determino i nuovi valori di equilibrio di produzione ed esportazioni nette. Se si riduce Y*, allora la IS cambia perché cambiano le esportazioni e quindi le esportazioni nette. Se si riduce Y*, allora la IS cambia perché cambiano le esportazioni e quindi le esportazioni nette.

74 Esercizio 4 punto b Quindi: Quindi: X = ,2 · · 0,8 = X = ,2 · · 0,8 = = – 200 = = – 200 = NX = ,2Y = – 0,2Y NB: Le importazioni sono invariate!

75 Esercizio 4 punto b Date le nuove NX, possiamo ora ricalcolare la IS: Date le nuove NX, possiamo ora ricalcolare la IS: Y = ,6Y ,1Y ,2Y = ,5Y Y = ,6Y ,1Y ,2Y = ,5Y Quindi Quindi 0,5Y = ,5Y = Y E’ = 16450/0,5 = Y E’ = 16450/0,5 = NX E’ = – 0,2 · = 5220 >0 NX E’ = – 0,2 · = 5220 >0

76 45° ZZ Y Y NX Y E = Avanzo commerciale ZZ NX E E E’ ZZ’ NX NX NX’

77 Esercizio 4 punto c E se invece di ridursi Y*, si riducesse la spesa pubblica, portandosi a 1000? Cosa succede al reddito ed alle esportazioni nette di equilibrio? E se invece di ridursi Y*, si riducesse la spesa pubblica, portandosi a 1000? Cosa succede al reddito ed alle esportazioni nette di equilibrio? Ricordiamo: se cambia la G, anche la IS cambia. Ricordiamo: se cambia la G, anche la IS cambia. Le funzioni C, I, NX però sono invariate, mentre invece i valori poi di equilibrio di C, I, NX cambiano perché cambia il valore di equilibrio di Y! Le funzioni C, I, NX però sono invariate, mentre invece i valori poi di equilibrio di C, I, NX cambiano perché cambia il valore di equilibrio di Y!

78 Esercizio 4 punto c La nuova IS sarà: La nuova IS sarà: Y = ,6Y ,1Y ,2Y = ,5Y Y = ,6Y ,1Y ,2Y = ,5Y Quindi Quindi 0,5Y = ,5Y = Y E’’ = 15350/0,5 = Y E’’ = 15350/0,5 = 30700

79 Esercizio 4 punto c Andiamo a ricalcolare consumo, esportazioni nette e investimento di equilibrio: Andiamo a ricalcolare consumo, esportazioni nette e investimento di equilibrio: C E’’ = ,6 · = C E’’ = ,6 · = I E’’ = ,1 · = 4020 I E’’ = ,1 · = 4020 NX E’’ = – 0,2 · = 6060 > 0 NX E’’ = – 0,2 · = 6060 > 0

80 45° ZZ Y Y NX Y E = Avanzo commerciale ZZ NX E E E’ ZZ’ NX NX


Scaricare ppt "Esercitazione finale Esercizi numerici Istituzioni di Economia Politica II Mario Menegatti."

Presentazioni simili


Annunci Google