La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Interferometria ottica-infrarossa in Astrofisica Esame Scuola VLTI, Porto, 28 Maggio – 8 Giugno 2007 Dottorando: Mario Giuseppe Guarcello.

Presentazioni simili


Presentazione sul tema: "Interferometria ottica-infrarossa in Astrofisica Esame Scuola VLTI, Porto, 28 Maggio – 8 Giugno 2007 Dottorando: Mario Giuseppe Guarcello."— Transcript della presentazione:

1 Interferometria ottica-infrarossa in Astrofisica Esame Scuola VLTI, Porto, 28 Maggio – 8 Giugno 2007 Dottorando: Mario Giuseppe Guarcello

2 Perché osservare con strumenti ad alta risoluzione angolare? Accurata determinazione della posizione della sorgente Dettagliate informazioni sulle dimensioni e morfologia Risoluzione Angolare degli interferometri VLTI da pochi mas (AMBER) a mas (MIDI)‏ Diametro Angolare delle orbite di pianeti del sistema solare, alla distanza della regione di formazione stellare del Toro (140 pc, circa 4.3×10 18 m): Nettuno-0.43 arcosecondi Giove arcosecondi Terra arcosecondi

3 Immagini con un telescopio convenzionale. Nell’attraversare l’atmosfera, la luce emessa da una sorgente puntiforme rifratta a causa delle casuali e repentine variazioni dell’indice di rifrazione dovute alle turbolenze. In un telescopio la luce di una sorgente puntiforme è in realtà dispersa in una area con una distribuzione data dalla Point Spread Function (PSF)‏

4 Per una sorgente non puntiforme, la distribuzione di intensità osservata I è: P è la PSF, O la distribuzione di intensità reale ed α e β coordinate nel cielo (misurate in radianti)‏ Passando alle trasformate di Fourier: u e ν sono coordinate reciproche ad α e β, chiamate frequenze spaziali; T è detta funzione di trasferimento

5 PUNTI CHIAVE Corrispondenza formale tra decomposizione di un immagine in termini di PSF e componenti di Fourier Corrispondenza tra le frequenze spaziali (es. u) di una determinata componente di Fourier ed una baseline fisica nell’apertura, che campiona la luce della sorgente (es. λu). Esempio di PSF e corrispondente funzione di trasferimento, funzione del solo parametro f. Il parametro f max è ~ al reciproco della FWHM della PSF

6 FUNZIONE DI COERENZA Rappresentazione schematica di un interferometro a 2 elementi Quantità di interesse: Chiamata funzione di coerenza. Media temporale

7 Coerenza temporale Se r 1 = r 2 : teorema di Weiner-Khinchin: Il valore della funzione di coerenza temporale è uguale alla trasformata di Fourier della distribuzione spettrale di energia della radiazione della sorgente:

8 Coerenza spaziale Se t 1 = t 2 : teorema di Cittert-Zernike: Il valore della funzione di coerenza spaziale è uguale alla trasformata di Fourier della distribuzione spaziale della radiazione della sorgente:

9 Risposta di un interferometro a 2 elementi due telescopi a x 1 e x 2 ; direzione della sorgente data dal vettore s; baseline data dal vettore B. Cammini ottici dai telescopi al sistema che combina i segnali d 1 e d 2. Sistema di compensazione per il differente cammino ottico.

10 I campi elettrici che arrivano al beam combiner: Intensità risultante (con telescopi di uguale sensibilità)‏ = Quindi, per visualizzare la frange è possibile: Alterare i cammini ottici d 1 e d 2 Sfruttare la rotazione della Terra

11 Sorgente estesa: sistema binario Sorgenti di intensità differente e non risolte Ogni sorgente produce il suo fringe pattern, con fase diversa legata alla posizione celeste. Risposta dell’interferometro (2 elementi) è data dalla sovrapposizione dei due segnali.

12 La fase dipende dalla posizione della sorgente La fase del segnale dato da un interferometro a 2 aperture (Young) dipende dalla posizione della sorgente:

13 Derivazione formale: sorgente estesa monocromatica Sistemi di riferimento: coordinate celesti {α, β, γ}; sistema in cui è misurato il vettore della baseline {u, v, w}. γ e w puntano nella direzione di s 0. Integrando la risposta monocromatica:

14 Aggiunta di un percorso ottico aggiuntivo (piccolo) δ:

15 Nei sistemi di referimento {α, β, γ} e {u, v, w}, dove s 0 =(0,0,1) e Δs=(α, β, 0): Dove:e La funzione Q corrisponde alla Visibilità

16 quindi: La risposta dell’interferometro è una misura delle parti reali ed immaginarie della quantità Q. Q è la trasformata bidimensionale della distribuzione di intensità della sorgente. Le trasformate di Fourier analizzate dipendono dalla baseline scelta.

17 Esempi di Visibilità Modulazione tipica di sistemi binari. Baseline parallela alla separazione. Modulazione tipica dei sistemi binari. Periodo dipendente dalla separazione angolare. Ampiezza dipende dal rapporto tra flussi. Diminuzione dell’ampiezza all’aumento della baseline. Strutture a scale minori dell’estensione del disco importanti a grandi baseline, dove l’ampiezza è <<1.

18 FINEFINE


Scaricare ppt "Interferometria ottica-infrarossa in Astrofisica Esame Scuola VLTI, Porto, 28 Maggio – 8 Giugno 2007 Dottorando: Mario Giuseppe Guarcello."

Presentazioni simili


Annunci Google