La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Istituto Italiano Attuari Seminario 2 Dicembre 2008 Solvency II e forme assicurative rivalutabili: un confronto tra approccio standard e modello stocastico.

Presentazioni simili


Presentazione sul tema: "Istituto Italiano Attuari Seminario 2 Dicembre 2008 Solvency II e forme assicurative rivalutabili: un confronto tra approccio standard e modello stocastico."— Transcript della presentazione:

1 Istituto Italiano Attuari Seminario 2 Dicembre 2008 Solvency II e forme assicurative rivalutabili: un confronto tra approccio standard e modello stocastico Luca BianchiPaolo De Angelis Gruppo Aviva Italia Università Sapienza Roma Gruppo Aviva Italia Università Sapienza Roma

2 2 2 Indice dellintervento 1. Solvency II: Riferimenti normativi 2. Modello Standard: Aspetti metodologici Applicazioni 3. Modello stocastico: Opzioni implicite Fonti di rischio e modelli stocastici dinamici Parametri market consistent Applicazioni 4. Considerazioni finali

3 3 3 L. BIANCHI 1. Solvency II: Riferimenti normativi 2. Modello Standard: Aspetti metodologici Applicazioni

4 4 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. La normativa sulle riserve in 15 punti (1) Bozza di direttiva comunitaria art 74: la valutazione delle riserve tecniche (brevemente TP) deve essere basata sul current exit value… in a prudent, reliable and objective manner. 2. art. 73: le liabilities devono corrispondere al valore presumibile di scambio fra controparti disposte ad effettuare la transazione alla pari. Ci sono diverse interpretazioni fra le quali quella del CRO Forum (documento emesso nel luglio 2008) secondo il quale lImpresa che riceve le riserve e gli attivi non ha un portafoglio storico (è vuota) e quindi non ha un bagaglio di conoscenze storiche tali da poter proporre unalternativa valida alle ipotesi specifiche dellimpresa che le trasferisce il portafoglio. 3. art 75:[TP] è la somma della best estimate e del risk margin…. 4. art 75: Best estimate e risk margin sono da valutare separatamente a meno che i futuri flussi di cassa possano essere replicati utilizzando strumenti finanziari il cui valore di mercato è direttamente osservabile [hedgeable risks]. 5. La best estimate deve essere pari alla media ponderata dei futuri flussi di cassa, considerando il valore temporale del denaro tramite lutilizzo della curva di tassi privi di rischio. Art.73: Nessun aggiustamento è consentito per tener conto del proprio merito di credito [è vietato in particolare laggiunta di uno spread alla curva dei tassi].

5 5 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. La normativa in 15 punti (2) 6 art 75: La best estimate deve basarsi su ipotesi (6a) aggiornate (6b) credibili e (6c) realistiche su (6d) tutti i flussi di cassa sia inflows che outflows derivanti (6e) sia da operazioni di lavoro diretto che indiretto e (6f) per tutta la vita attesa del portafoglio. (6d): Gli outflows e gli inflows sono le componenti rispettivamente positive e negative delle riserve. Ad esempio i caricamentti sono inflows mentre le spese future sono outflows. I proventi degli investimenti sono esclusi dagli inflows e, in loro vece, cè la considerazione dei rendimenti proporzionali alle stesse riserve tecniche che risultano implicite nellattualizzare a tassi privi di rischio, cioè a tassi di rendimento equiparabili ai tassi di rendimenti dellattivo (proventi degli investimenti). inclusi i future discretionary bonuses sia che siano garantiti dal contratto sia che non lo siano [obbligazioni di fatto] 7 art 76: I flussi di cassa devono includere tutte le spese che saranno sostenute per far fronte agli impegni assicurativi e su quelle si deve tener conto dellinflazione; tutti gli impegni verso i policyholders e [più in generale] verso i beneficiari, inclusi i future discretionary bonuses sia che siano garantiti dal contratto sia che non lo siano [obbligazioni di fatto] 8 art 75: La best estimate deve essere costituita al lordo del lavoro ceduto. 9 art 79: le riserve [best estimate] a carico della riassicurazione passiva devono essere aggiustate per tener conto delle perdite attese per il default del riassicuratore. Questo aggiustamento deve essere basato su una stima della probabilità di default della controparte e della perdita media che ne deriva. Questo articolo stabilisce (1) che chi trasferisce laliquota alfa del proprio rischio, trasferisce una quota minore di alfa della propria best estimate; (2) che non cè risk margin esplicito sul lavoro ceduto. Da notare, inoltre, che il rischio di controparte del riassicuratore è un componente dellSCR nonostante tale rischio sia già incluso nel calcolo della best estimate ceduta.

6 6 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. La normativa in 15 punti (3) 10. art 77. [TP] devono tener conto del valore delle garanzie finanziarie e di qualunque opzione inclusa nel contratto. Ogni ipotesi sulla possibilità di esercitare tali opzioni, incluse quelle sulle decadenze anticipate e sui riscatti, devono essere realistiche e basate su informazioni aggiornate e credibili. Occorre tener conto dellimpatto che mutamenti delle condizioni finanziarie e non finanziarie possono avere nelle ipotesi sulle [frequenze delle] opzioni. Questo articolo poggia le basi per le valutazioni stocastiche da adottare quando il contraente ha la possibilità di esercitare opzioni contrattuali a lui favorevoli ed in particolare quelle che risulteranno favorevoli in relazione al realizzarsi di certe condizioni finanziare nel mercato. Lo puntualizza il manuale tecnico del QIS4 alla voce TS.II.D.42. Lo stesso manuale stabilisce alla voce TS.II.D.42 che luso della simulazione stocastica è da preferire per i contratti with-profit. 11. art 75. Il risk margin [calcolato solo per rischi non hedgeable] è il costo del margine di solvibilità. Il Cost of Capital Rate è lo stesso per il lavoro diretto ed indiretto. La direttiva non descrive in dettaglio la formulazione del risk margin. Per questo occorre guardare i lavori del CEA che hanno ispirato i QIS terzo e quarto ed il lavoro del CRO Forum del luglio 2008 che si occupa in particolare dei principi sottostanti la determinazione del cost of capital rate 12. art 78. Le imprese devono segmentare il portafoglio in rischi omogenei creando gruppi che abbiano come minimo dettaglio la linea di business. La direttiva si preoccupa della segmentazione nonostante questa non incida affatto sulla valutazione delle best estimate deterministica: questa è sempre la stessa a prescindere dallunita di valutazione (unit of account). Tuttavia la segmentazione incide sulla valutazione del risk margin perché questa componente di riserva - legata principalmente al rischi di underwriting - deve essere valutata per ciascun gruppo senza compensazione fra gruppi. La segmentazione significa dunque laccumulo di tante riserve risk margin senza poter usare le matrici di correlazione per la diversificazione dei rischi fra gruppi distinti.

7 7 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. La normativa in 15 punti (4) 13. Il manuale tecnico del QIS4 stabilisce che nella proiezione dei flussi futuri di cassa occorre tener conto del comportamento degli assicurati (voci da TS.II.D.11 a TS.II.D.15) ed in particolare la loro reazione a cambiamenti nei mercati finanziari e la reazione alla riduzione della solvibilità dellassicuratore. Lo stesso manuale specifica che è doveroso includere le management actions alla voce TS.II.D.16. Le management actions sui contratti rivalutabili italiani sono azioni prevedibili sugli attivi a copertura delle gestioni separate, sulla base di politiche di Impresa già note alla data di valutazione, che incidono sul rendimento degli stessi e quindi anche sulle rivalutazioni future da mettere a riserva. La voce TS.II.D.34 limita la previsione dei rendimenti degli attivi ai tassi forward impliciti nella curva risk free, e subito dopo puntualizza che ciò vale laddove non ci sono financial options and guarantees, dunque escludendo da tale ambito i contratti profit sharing. Il documento emesso dal CRO Forum nel luglio 2008 sostiene che i rendimenti dellattivo a fronte di contratti profit sharing si basano sulla curva risk free ma dipendono anche dalla composizione dellattivo alla data di valutazione. 14. Art.80 La direttiva chiede agli Stati Membri di richiedere alle Compagnie di dotarsi di processi interni e di procedure che assicurino lappropriatezza, la completezza e laccuratezza dei dati utilizzati nelle valutazioni delle riserve tecniche. 15. Art 81 le Compagnie hanno processi e procedure che consentano loro di verificare laderenza delle ipotesi adottate nelle valutazioni rispetto allesperienza. Laddove il confronto identifica scarti sistematici, le Imprese aggiusteranno le ipotesi di valutazione.

8 8 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. SCR, BSCR, ADJ

9 9 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. SCR(op) e SCR(mkt)

10 10 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Il rischio di tasso di interesse.

11 11 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Il rischio azionario.

12 12 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Il rischio divisa ed il rischio immobili.

13 13 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Il rischio spread.

14 14 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Il rischio di concentrazione.

15 15 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. I rischi assicurativi di mortalità, di invalidità e di sopravvivenza.

16 16 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. I rischi assicurativi catastrofale, decadenza anticipata e spese.

17 17 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Il rischio di controparte.

18 18 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Best Estimate (1)

19 19 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Best Estimate (2)

20 20 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Risk Margin

21 21 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. accumulation of profits (present value) yearSolvency IIprofitSolvency II profit and lossprofit withoutand loss 0 local risk marginlocal 1 893,80 28,22 853,71 908,72 26, ,22 34,37 941,77 985,71 58, ,82 100, , ,33 146, ,24 114, , ,50 241, ,67 127, , ,79 343, ,23 131, , ,49 443, ,03 144, , ,82 549, ,26 153, , ,94 655, ,73 151, , ,12 755, ,97 152, , ,05 851, ,95 141, , ,16 935, ,26 131, , , , ,43 120, , , , ,33 106, , , , ,71 90, , , ,12 Total 1.725,64

22 22 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Andamento dei profitti nel tempo nel bilancio di solvibilità 2 I profitti cumulati fino ad estinzione del portafoglio non dipendono dal metodo di valutazione delle riserve (sono sempre pari a 1725,64); invece la distribuzione del profitto nel tempo ne dipende sensibilmente. Le riserve Solvency II (brevemente TPS) fanno si che i profitti siano concentrati nel primo anno ed in modo particolare il giorno della decorrenza del contratto (profit at inception). Il metodo locale di valutazione della riserva equidistribuisce i profitti; nel caso esaminato si nota una leggera concentrazione nel periodo centrale. Ne consegue che il valore [attuale] del portafoglio è maggiore sotto Solvency II (1475,03 contro 1174,12). La presneza del risk margin incide marginalmente su tale misurazione: senza il risk margin, il valore attuari dei profitti futuri sarebbe 1488,14.

23 23 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. year BEST RISK MA RGI N Tot.solvency local asset net investment ESTIMATE CoC reserve technical liability eoy cash flows income "BEL" "RM" provisions eoy ,44 66, , ,73 57,60 133,33 998, ,12 984,95 42, ,15 45, , , ,67 984,13 87, ,91 39, , , ,32 857,17 130, ,37 36, , , ,57 751,88 174, ,93 32, , , ,44 654,36 210, ,92 29, , , ,45 561,54 234, ,35 26, , , ,78 473,01 273, ,08 23, , , ,70 386,99 328, ,38 20, , , ,76 305,12 348, ,70 17, , , ,06 225,99 393, ,32 14, , , ,67 151,48 390, ,31 11, , , ,77 80,55 402, ,44 7, , , ,93 12,62 421, ,37 4, , , ,44- 52,39 436, , ,22 452,42

24 24 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Andamento delle riserve nel tempo. La Best Estimate alla decorrenza è negativa (-868,44) in quanto il prodotto è profittevole e la Best Estimate al tempo zero è lattualizzazione dei flussi di cassa attesi fino ad estinzione; pertanto sconta i futuri profitti attesi, con leccezione dei proventi degli investimenti che vanno sostituiti con i rendimenti lordi delle stesse riserve tecniche. Nei premi unici, la Best Estimate torna ad essere positiva già dopo un giorno la decorrenza, subito dopo la contabilizzazione del premio iniziale e della provvigione iniziale. Nei premi annui o ricorrenti può rimanere negativa anche dopo la decorrenza. Nella mista a premio annuo torna ad essere positiva soltanto dopo un anno (+75,73). Il Risk Margin ha sempre segno positivo. Il suo peso relativo decresce nel tempo. Trascorsi 6/7 anni su 15 il suo peso è intorno allo 0.7 / 0.5% il valore della Best Estimate. Questo valore è in linea con quello registrato sulle polizze rivalutabili durante gli studi di impatto quantitativo (QIS) quale media nel mercato italiano basato sul campione delle Imprese partecipanti.

25 25 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. year BEST Present value at time zero of future Gross Present value (accumulation) at time zero ESTIMATE minimum DPF to theInvestment net margin from "BEL" guaranteed policyholders income the investments , ,26 65, ,53 402, , ,32 68,41 42, ,41 419, , ,31 66,31 87, ,66 413, , ,84 66,32 130, ,41 405, , ,16 62,46 174, ,85 392, , ,09 59,12 210, ,25 374, , ,85 59,17 234, ,38 356, , ,71 58,08 273, ,59 329, , ,59 40,64 328, ,73 296, , ,97 29,11 348, ,28 260, ,70 966,79 7,91 393, ,25 218, ,32 769,18 2,36 390,13 948,57 177, ,31 572,05 1,47 402,56 707,81 134, ,44 377,56 0,58 421,54 468,29 90, ,37 186,58 0,41 436,91 232,27 45, , Total 4.327,47

26 26 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Scomposizione della Best Estimate Deterministica La Best Estimate deterministica si può scomporre in tre componenti: [valore attuale medio] prestazioni future senza includere gli interessi; [valore attuale medio] interessi futuri maturandi sulle riserve tecniche stesse e da riconoscere agli Assicurati od a Terzi; [Valore attuale medio] spese future al netto dei caricamenti (qui non considerati); La seconda componente si può scomporre in tre componenti [valore attuale medio] garanzie di tasso di interesse; [valore attuale medio] rivalutazioni discrezionali Policyholder Dividends; [valore attuale medio] commissioni ricorrenti legate ai rendimenti della gestione separata o ad altri fattori legati ai tassi di rendimento (qui non considerati). Per poter isolare ciascuna di queste 3 sotto-componenti della 2nda componente dalla prima componente occorre definire convenzionalmente una riserva di riferimento che nel caso esaminato di polizza mista è la riserva locale. Nel caso esaminato la componente Policyholder Dividends è di gran lunga inferiore alla componente di minimo garantito soltanto perché la gestione separata ha rendimenti di poco superiori alla garanzia di minimo (4%), ma con garanzie di minimo al 2% i pesi sono delle due componenti si equivalgono.

27 27 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. La proiezione delle prestazioni future Le prestazioni future si rivalutano in funzione dei rendimenti prevedibili della gestione separata. I rendimenti prevedibili dipendono dalla curva dei tassi risk free alla data di valutazione. I Successivi elementi dipendono da fattori soggettivi: Scelta della curva risk free governativa piuttosto che euroswap (QIS4 ha scelto la seconda). Scelta del metodo di interpolazione per ricavare le curve forward/spot (es. cubic spline, bootstrap). Scelta della politica di ALM (management actions). Le management actions sono azioni sullattivo che incidono sui rendimenti prevedibili e di conseguenza sulle riserve per policyholder dividends. Come e quando reinvestire la liquidità disponibile dalle quietanze future e dagli investimenti in scadenza non necessari per far fronte alle liquidazioni. Come reinvestire le cedole dei titoli obbligazionari. Se e quando realizzare le plusvalenze o le minuvalenze latenti. Se farlo a fronte di liquidazioni. Se farlo a prescindere dalle liquidazioni per il reimpiego in altri investimenti.

28 28 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. La riserva per policyholder dividends ed il fattore RPS (1). Qualora non si disponga ancora di un metodo esatto di scorporo della componente DPF inclusa nella Best Estimate, cè un metodo di stima della riserva Policyholder Dividends come descritto nel questionario qualitativo del QIS4 applicato a gruppi di portafogli rivalutabili (non polizza per polizza). Ecco come viene descritto nel questionario qualitativo QIS4: The information come from the system used twice a year for the ALM (compulsory for the local balance sheet) and for the calculation of the (eventual) additional reserves to cover the minimum guarantees. We had already the 2 streams of local liabilities as outcomes: the projections over 15 years over the portfolio in force as at and split by fund and by minimum guaranteed. The 1st stream is the TP and the 2nd stream represents the TP without the DPF component (TPM briefly). At time T, TP(t) – TPM(t) represents the accumulation of DPF in the liabilities matured from time zero (the evaluation date) and time T, relevant to the portfolio in force at time T. We define f(t) the probability that the contracts do not survive between time t-1 and time t, for death or for lapse (with f(1)=0). At time T, [TP(t) – TPM(t)] – [TP(t-1) – TPM(t-1)] * (1-f(t))= DPF(t) Is the estimate of the increase of liability due to the recognition of the dividends in the range (t-1,t] to the policyholders survived in t. Therefore the whole DPF liability is: DPF= Where sp(t) is the risk free spot rate as to t

29 29 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. La riserva per policyholder dividends (DPF) ed il fattore RPS (2). Il Fattore RPS è la diminuzione della riserva DPF dopo un shock di mercato od assicurativo. Questa diminuzione dipende soltanto dalla ri - determinazione dei rendimenti prevedibili della gestione separata. Questa ri – determinazione non è automatica (interpretazione valida solo dal QIS4) ma dipende da politiche di ALM specifiche di Impresa. LALM agisce sugli attivi (non sulle politiche di customer care od altre politiche sul portafoglio polizze) e di conseguenza sui rendimenti prevedibili. LRPS è limitato al più al valore della riserva DPF prima dello shock Nonostante lRPS sia una misura di [variazione di] riserva, si conviene di considerarla come sconto sul margine di solvibilità da costituire SCR.

30 30 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. year Tot.solvency assetSolvency IINet assets technical eoyprofit (PR)ASCRFree capital provisionsA(t)=A(t-1)+PR(t)BA-B , , , ,12 893,80 368,84 524, , ,67 96,22 990,01 513,94 476, , ,32 88, ,83 621,15 457, , ,57 87, ,08 728,16 437, , ,44 83, ,75 800,00 449, , ,45 68, ,97 848,50 469, , ,78 68, ,00 865,47 520, , ,70 85, ,26 855,21 616, , ,76 66, ,99 818,97 719, , ,06 75, ,96 761,62 852, , ,67 39, ,92 687,87 966, , ,77 26, ,18 600, , , ,93 20, ,60 507, , , ,44 14, ,93 424, , ,64 10, ,64 -

31 31 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Attivo e patrimonio libero; ring fencing Lattivo ad estinzione del portafoglio – se non si distribuiscono dividendi - è pari a 1725,64 ossia al cumulo dei profitti, a prescindere dal metodo di valutazione della riserva. Il capitale libero, ossia il patrimonio netto non impegnato a coprire il margine di solvibilità SCR, tende a diminuire nel primo biennio per poi incrementare a ritmo crescente fino ad equivalere allattivo (1725,64) ad estinzione del portafoglio. Il ring fencing di un fondo assicurativo è la considerazione del fondo assicurativo alla stregua di unImpresa di Assicurazione separata dalle altre ring-fenced / Imprese di Assicurazione e dagli altri attivi. Un fondo ring fenced non può mettere a disposizione il patrimonio libero per coprire la solvibilità di altri fondi ring fenced né la solvibilità della Compagnia. Il QIS4 ha sperimentato gli effetti di ring fencing Paese per Paese. Per lItalia lo si è sperimentato solo sul margine di gruppo ma non sul margine di solvibilità individuale.

32 32 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. year worst case INT rate risk Equity risk Property risk Spread risk Conc.risk Currency risk ,29- 19, ,59- 8, ,63- 39, ,35- 16, ,86- 57, ,80- 24, ,09- 74, ,04- 32, ,30- 90, ,07- 39, , , ,86- 45, , , ,47- 51, , , ,97- 57, , , ,26- 62, , , ,43- 67, , , ,33- 71, , , ,02- 75, , , ,54- 78, , , ,88- 82,02 -

33 33 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico: rischi di mercato I rischi di mercato possono essere individuati per il complesso della Compagnia (es. rischio di concentrazione) od al più per una gestione separata. Pertanto lindividuazione del contributo di un gruppo di contratti può essere soltanto stimato partendo dal valore registrato sullintero portafoglio. Ciascun rischio di mercato ha un contributo pari alleffetto sul profitto al lordo delle imposte. Il profitto è quello del bilancio Solvency II, i cui attivi sono contabilizzati a valore di mercato (no regole locali, no regole bilanci ias/ifrs phase I). Il rischio di tasso di interesse è il peggiore fra uno shift down ed uno shift up della curva risk free euroswap. Nel caso di shift up le riserve (generalmente) diminuiscono e gli attivi perdono valore; viceversa nel caso di shift down. Gli effetti su riserve ed attivo (generalmente) si bilanciano Lequity risk è il cumulo degli effetti su attivo e riserve di un equity fall: gli effetti si sommano (cioè non si bilanciano ma hanno lo stesso segno) Il rischio di concentrazione è materiale nelle piccole Compagnie.

34 34 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico: il rischio di tasso di interesse Leffetto di uno shift up sulle riserve realistiche deve essere desunto sperimentalmente; può essere tuttavia anche desunto facendo alcuni ragionamenti a priori (stessi ragionamenti anche sullo shift down): 1) la Best Estimate è la differenza fra [valore attuale medio] cash flows positivi (impegni e spese) e [valore attuale medio] cash flows negativi (caricamenti e penali di decadenza) BEL = PVO – PVI 2) Sia PVO che PVI tendono a zero al crescere del discount rate (cioè con lo shift up della curva tassi) a parità di cash flows a numeratore. 3) Sia PVO che PVI includono a numeratore cash flows che non reagiscono ai tassi di interesse (PVOn e PVIn) come spese e caricamenti sui premi futuri BEL = (PVOr – PVIr) + (PVOn – PVIn) 4) PVOn-PVIn = 2nda componente, se positiva diminuisce, se negativa aumenta. 5) PVOr è generalmente di gran lunga superiore a val.ass.(PVIr) e dipende – in modo diretto – dai rendimenti prevedibili se e solo se le prestazioni future ne sono legate. 6) Il legame è presente se (a) impatta sulle rivalutazioni future o/e (b) impatta sul time value delle garanzie di minimo. 7) Occorre verificare se i rendimenti prevedibili aumentano o dimunuiscono con uno shift up (il più delle volte aumentano) ed il loro impatto (vedi punto 6).

35 35 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. year Tot Market risk average without with effect of Default diversification excl.reins. solo reins. Tot ,21 235,2111,0%- 0,72- 0,21 0, ,80 446,7111,7%- 1,47- 0,42 1, ,76 607,1312,5%- 2,16- 0,62 2, ,87 724,6613,4%- 2,81- 0,80 3, ,11 802,3314,5%- 3,41- 0,98 4, ,17 842,0915,7%- 3,97- 1,13 5, ,46 849,9217,2%- 4,49- 1,28 5, ,16 830,6519,0%- 4,99- 1,43 6, ,75 782,8921,1%- 5,45- 1,56 7, ,24 712,3923,8%- 5,89- 1,68 7, ,27 618,8127,2%- 6,27- 1,79 8, ,11 508,8031,5%- 6,60- 1,89 8, ,21 390,3036,8%- 6,91- 1,97 8, ,93 280,0941,0%- 7,18- 2,05 9,23

36 36 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico: diversificazione (1) Ci sono due livelli di effetti di diversificazione: il primo agisce fra le sotto-categorie di rischi di mercato e fra le sotto-categorie di rischi assicurativi; la seconda agisce fra rischi di mercato, assicurativi e default/controparte. La diversificazione viene colta tramite le correlazioni (uso di matrici di correlazione): Se A, B e C sono le misure di tre rischi (calcolati ciascuno nellipotesi di assenza di stress sugli altri due) le cui correlazioni sono alfa, beta, delta (compresi fra -1 e +1), il rischio cumulato è Rischio = [A^2 + B^2 + C^2 + 2*(alfa*A*B + beta*B*C + delta*A*C)]^(1/2) Cè diversificazione in quanto: 1)La probabilità che due fattori sfavorevoli si verifichino nello stesso anno è inferiore alla somma delle probabilità (probabilità misurata come VAR al 99,5% ad un anno) 2)Un fattore che agisce sfavorevolmente su un rischio può avare un effetto positivo su un altro (es. mortalità e longevità)

37 37 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico: diversificazione (2) Cè un ulteriore diversificazione per lappartenenza ad un Gruppo Assicurativo per: 1)La probabilità che uno stesso fattore agisca sfavorevolmente su un rischio nello stesso anno per due Imprese del Gruppo è inferiore alla somma delle probabilità, soprattutto se dislocate su due aree geografiche 2)Maggior numero di polizze esposte ai rischi assicurativi 3)Maggior uniformità di distribuzione degli elementi esposti al rischio (es. rischio di concentrazione) 4)Compensazioni. Ad esempio se lo shift up di tasso ha leffetto sfavorevole per lImpresa uno e lo shift down di tasso ha leffetto sfavorevole per lImpresa due, i due effetti si bilanciano per il margine di solvibilità SCR di Gruppo.

38 38 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. year underwriting mortality longevity disability lapse expense revision , , , , , , , , , , , , , , , , , , , , , , , , , , , ,85 - -

39 39 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. year underwriting average CAT without with effect of risk diversification ,84 219,77 182,2917,1% 2- 28,34 104,16 98,125,8% 3- 25,17 64,82 60,187,2% 4- 22,20 67,23 60,839,5% 5- 19,43 69,41 61,4911,4% 6- 16,82 72,01 62,7712,8% 7- 14,38 74,86 64,4413,9% 8- 12,14 77,04 65,5914,9% 9- 10,02 80,99 68,5615,4% 10- 8,07 84,87 71,5315,7% 11- 6,21 93,24 79,0115,3% 12- 4,47 104,55 89,4514,4% 13- 2,86 118,33 102,4213,4% 14- 1,37 134,95 118,2512,4%

40 40 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico: i rischi assicurativi Il rischio lapse (decadenza anticipata) è sensibilmente decrescente nei primi anni. Nei primi anni risente del test sul surrender floor: il valore imputabile come rischio lapse non può essere inferiore al 30% della differenza fra [valore attuale del] valore di riscatto esigibile e Best Estimate della riserva. Successivamente questo vincolo non ha effetto. Il rischio di mortalità è poco materiale sul portafoglio di polizze miste. Il rischio di sopravvivenza pur essendo presente nellelemento di capitale differito, non va misurato: per ciascun contratto occorre decidere se misurare il rischio di mortalità o quello di sopravvivenza (escluso rischio di sopravvivenza legato ad opzione in rendita) Il rischio catastrofale si riferisce alla mortalità e non più (come nel QIS3) anche al rischio lapse cioè alle conseguenze del catastrofico abbandono dei contratti non appena il valore di riscatto diviene esigibile..

41 41 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. year market default life health non life ,21 0,92 182, ,71 1,89 98, ,13 2,78 60, ,66 3,61 60, ,33 4,39 61, ,09 5,11 62, ,92 5,78 64, ,65 6,42 65, ,89 7,01 68, ,39 7,57 71, ,81 8,06 79, ,80 8,49 89, ,30 8,88 102, ,09 9,23 118,25 - -

42 42 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. TOT average year without 2nd with 2nd effect of BSCR level of diversification 1 418,43 331,9520,7% 327, ,71 481,2612,0% 518, ,09 625,656,6% 644, ,10 743,175,8% 766, ,21 821,045,4% 848, ,96 861,295,3% 893, ,13 869,815,5% 905, ,66 851,145,7% 890, ,45 804,666,3% 848, ,49 735,617,1% 783, ,87 645,368,6% 699, ,74 540,6010,9% 602, ,60 430,2114,2% 498, ,57 333,0418,3% 406,20

43 43 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. year BSCR Thereof and deferred Operational SCR RPS adj. taxes adj 1 327,11 4, ,00 357, ,37 5, ,98 548, ,92 5, ,95 674, ,89 5, ,14 795, ,79 4, ,43 875, ,14 4, ,82 917, ,75 4, ,31 929, ,52 3, ,89 912, ,43 2, ,55 868, ,42 0, ,33 803, ,66 0, ,85 721, ,27 0, ,23 625, ,74 0, ,48 523, ,20 0, ,60 431,80

44 44 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico LRPS adjustment è piccolo perché nel portafoglio esaminato è piccola la riserva DPF per rivalutazioni discrezionali. Ciò si deve alla garanzia di minimo al 4% che è prossima ai rendimenti futuri prevedibili della gestione separata. Il Deferred Taxes Adjustment è nullo per prudenza. Tuttora sono presenti diverse interpretazioni da parte delle Compagnie partecipanti. È la riduzione delle riserve per imposte differite a seguito di uno shock (es. shock sui tassi di interesse). Non deve essere inteso come effetto favorevole per leventuale cambio di regime fiscale con il passaggio al bilancio di solvibilità 2. Il rischio operativo non risente dei benefici di diversificazione con gli altri rischi.

45 45 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Il quadro delle ipotesi (1) Profit sharingthereof thereof overhead annual premium1000initial comm.renewal comm.and service for claims front end load0,00% term, age at entry, age shift, calc.age and sex (0=m, 1=f) initial commission00% on premiumon inv.yieldinitial expenses0,00% renewal commission0%0,00%claims cost0,0 renewal expenses (% deposit)0,00%inflation rate2,50% renewal expenses (per contract)0SCR unit cost6% minimum guaranteed4% max invest.yield for the entity2,00%share for the Entity (gross)5% min invest.yield for the entity0,10% hipothesis on the concentrations of the cash flows a) end of year: benefits paid to pol.holder, interests, fee for the sales agencies, renewal expenses b) beginning of year: premiums, commissions Mortality table used for pricing and for unit TPSIM1981 initial local dac - period of amortization10 Kind of application0(pure premium)

46 46 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Il quadro delle ipotesi (2) realisticimplied mortality tablelapsessurrenderfree risk segregated year(IPS55 imp.diff.)penaltyspotforwardfund inv. rate yield 10, ,0%100,0%4,70% 4,22% 20, ,0%100,0%4,53%4,36%4,31% 30, ,0%32,5%4,51%4,48%4,21% 40, ,0%28,3%4,53%4,60%4,33% 50, ,0%26,0%4,55%4,63%4,30% 60, ,0%23,6%4,58%4,71%4,11% 70, ,0%21,1%4,61%4,82%4,24% 80, ,0%18,6%4,65%4,93%4,60% 90, ,0%16,0%4,70%5,06%4,46% 100, ,0%13,4%4,74%5,14%4,66% 110, ,0%10,8%4,78%5,21%4,33% 120, ,0%8,1%4,82%5,21%4,23% 130, ,0%5,4%4,85%5,22%4,23% 140, ,0%2,7%4,88%5,22%4,21% 150, ,0%0,0%4,90%5,22%4,22%

47 47 Solvency II e forme assicurative rivalutabili: un confronto fra approccio standard e modello stocastico. Il quadro delle ipotesi (3) segregatedminimumfor the entityDPF fund inv.guaranteedto policyholderyear yieldto policyholder 4,22%4,00%0,21%0,01%1 4,31%4,00%0,22%0,10%2 4,21%4,00%0,21%0,00%3 4,33%4,00%0,22%0,12%4 4,30%4,00%0,22%0,09%5 4,11%4,00%0,11%0,00%6 4,24%4,00%0,21%0,03%7 4,60%4,00%0,23%0,37%8 4,46%4,00%0,22%0,24%9 4,66%4,00%0,23%0,43%10 4,33%4,00%0,22%0,11%11 4,23%4,00%0,21%0,02%12 4,23%4,00%0,21%0,02%13 4,21%4,00%0,21%0,00%14 4,22%4,00%0,21%0,01%15

48 48 P. DE ANGELIS 3. Modello stocastico: Opzioni implicite Fonti di rischio e modelli stocastici dinamici Parametri market consistent Applicazioni 4. Considerazioni finali

49 49 Fasi Operative per la Costruzione di un modello interno Modello attuariale per il Fair Value del contratto assicurativo: Best Estimate Liability Risk Margin Value: Quantile Approach vs. Cost of Capital Definizione processi aleatori delle fonti di rischio e scelta dei modelli stocastici dinamici Calibratura dei parametri dei processi aleatori Scelta delle misure di rischio

50 50 Fair Value e Misure di Rischio The required capital is defined as the excess of the insurers required assets over its liabilities to avoid insolvency over the specified time horizon at some given level of risk tolerance.

51 51 s Fonte: CFO Forum Schema della Struttura Patrimoniale Solvency II compliant

52 52 Modello Attuariale FV forme rivalutabili:fonti di incertezza Assumiamo per il teorico mercato di riferimento le usuali proprietà di efficienza, ovvero linformazione è disponibile a tutti gli operatori simultaneamente, ciascun operatore agisce razionalmente e non sono possibili profitti da arbitraggio non rischioso. Siano, rispettivamente, il processo aleatorio del tasso di interesse spot di mercato, il processo aleatorio dellintensità istantanea di mortalità ed il processo aleatorio del valore del portafoglio finanziario di riferimento, misurabili rispetto alle filtrazioni

53 53 Fair Value di un contratto di assicurazione rivalutabile Componente Base Mista a Capitale Costante- Componente di deposito Opzione di partecipazione Opzione cliquet - PE pari al Minimo Opzione in rendita Opzione di tipo europeo – PE pari al reciproco del coeff. Conversione Opzione di riscatto American-style option

54 54 Fair Value di un contratto di assicurazione rivalutabile: opzioni implicite Polizza mista rivalutabile a premio annuo costante il fattore di sconto stocastico tra t e t+τ; la probabilità stocastica di decesso dellassicurato di età x+t nel t+τ - esimo anno di contratto; la probabilità stocastica dellassicurato di età x+t di essere in vita tra τ anni; il prezzo stocastico in t di un zero coupon bond indicizzato con valore nominale unitario e scadenza in t+τ.

55 55 Fair Value di un contratto di assicurazione rivalutabile: opzioni implicite Contratto Base Contratto Base + Opzione di partecipazione Contratto rivalutabile + opzione in rendita [Ballotta and Haberman (2003)] dove il valore a scadenza dellopzione di conversione in rendita è:

56 56 Fair Value di un contratto di assicurazione rivalutabile: opzione di riscatto_backward recursive procedure Il valore di continuazione al tempo s-1 per la traiettoria j è pari a [Andreatta e Corradin (2003)]: Al tempo t < s – 1 Fair Value dellintero contratto Con opzione di conversione in rendita [Baione, De Angelis, Fortunati (2006)]

57 57 Scelta modelli stocastici dinamici Rischio demografico modello stocastico di tipo Mean-Reverting Brownian Gompertz (MRBG). Rischio finanziario modello di Cox, Ingersoll e Ross.

58 58 P. De Angelis 58 Rischio demografico - modello MRBG La dinamica del processo è descritta da un modello stocastico di tipo Mean-Reverting Brownian Gompertz (MRBG); in particolare se = V.A. durata di vita residua di un assicurato di età x, = intensità istantanea di mortalità stocastica di un individuo di età x+t, osservata sullanno di calendario t allora:

59 59 P. De Angelis 59 Rischio demografico - modello MRBG riassume la correzione di tipo deterministico prodotta contestualmente dalla variazione delletà e dalleffetto del longevity risk, su cui si innestano perturbazioni aleatorie prodotte dal processo rappresenta la deviazione standard del processo ; è un processo mean reverting, la cui dinamica è descritta da : con b il coefficiente di mean reverting e moto Browniano standard.

60 60 P. De Angelis 60 Rischio finanziario - modello CIR Per il processo si assume una dinamica del tipo Mean Reverting Square Root, il coefficiente di mean reverting, il tasso normale di lungo periodo, la volatilità dello spot rate, un moto Browniano standard.

61 61 P. De Angelis 61 Rischio finanziario – Processo aleatorio rendimento gestione separata La dinamica del portafoglio di investimento a cui sono agganciate le prestazioni assicurative: benchmark : prevalente componente obbligazionaria ed una minore componente azionaria il valore dello spot rate al tempo t; il valore dellindice di riferimento al tempo t; la volatilità dellindice; un moto Browniano standard.

62 62 Una applicazione del modello di Fair Value Metodo di calcolo: simulazione numerica di tipo Monte Carlo (n. replicazioni: ). Caratteristiche Contratto A: Premio annuo costante Sesso M Età allemissione 40 Antidurata 0 Durata residua 15 Tasso tecnico di attualizzazione4,00 % Tavola demografica SIM 81 Capitale assicurato iniziale ,23 Capitale rivalutato ,23 Aliquota di retrocessione 95,0% Coefficiente di conversione in rendita7,06% Penalità del valore di riscatto 5,50% 5,25% Aliquote di composizione del portafoglio di riferimento: Indice Azionario Indice Obbligazionario 4,5% 95,5%

63 63 Una applicazione del modello di Fair Value Metodo di calcolo: simulazione numerica di tipo Monte Carlo (n. replicazioni: ). Caratteristiche Contratto A1: Premio annuo costante Sesso M Età allemissione 40 Antidurata 0 Durata residua 15 Tasso tecnico di attualizzazione2,00 % Tavola demografica SIM 81 Capitale assicurato iniziale ,05 Capitale rivalutato ,05 Aliquota di retrocessione 95,0% Coefficiente di conversione in rendita7,06% Penalità del valore di riscatto 5,50% 5,25% Aliquote di composizione del portafoglio di riferimento: Indice Azionario Indice Obbligazionario 4,5% 95,5%

64 64 Una applicazione del modello di Fair Value Metodo di calcolo: simulazione numerica di tipo Monte Carlo (n. replicazioni: ). Caratteristiche Contratto A2: Premio annuo costante Sesso M Età allemissione 40 Antidurata 0 Durata residua 15 Tasso tecnico di attualizzazione0,00 % Tavola demografica SIM 81 Capitale assicurato iniziale ,99 Capitale rivalutato ,99 Aliquota di retrocessione 95,0% Coefficiente di conversione in rendita7,06% Penalità del valore di riscatto 5,50% 5,25% Aliquote di composizione del portafoglio di riferimento: Indice Azionario Indice Obbligazionario 4,5% 95,5%

65 65 Una applicazione del modello di Fair Value Metodo di calcolo: simulazione numerica di tipo Monte Carlo (n. replicazioni: ). Caratteristiche Contratto B: Premio annuo costante Sesso M Età allemissione 40 Antidurata 5 Durata residua 10 Tasso tecnico di attualizzazione4,00 % Tavola demografica SIM 81 Capitale assicurato iniziale ,23 Capitale rivalutato ,23 Aliquota di retrocessione 95,0% Coefficiente di conversione in rendita7,06% Penalità del valore di riscatto 5,50% 5,25% Aliquote di composizione del portafoglio di riferimento: Indice Azionario Indice Obbligazionario 4,5% 95,5%

66 66 Stima dei parametri Modello CIR: calibrazione sulle quotazioni degli interest rate swaps, caps e floors al 31 dicembre Modello MRBG : stimatori di massima verosimiglianza sulle variazioni delle intensità istantanee di mortalità osservate sulle tavole di mortalità ISTAT - anni di rilevazione: 1931, 1951, 1961, 1971, 1981, 1991; il parametro è stato ricalibrato in riferimento alla tavola di mortalità IPS55D.

67 67 Stima dei parametri Stima dei parametri processo rendimento del portafoglio: serie storica delle quotazioni giornaliere del JP Morgan GBI EMU e del S&P /MIB Index, osservate sul periodo 01/01/ /12/2007. Strategia finanziaria della gestione separata ispirata ad una gestione passiva sul benchmark di riferimento. 0,04460,5100 0,00360,120,03 0,19000,11-0,1 0,0010

68 68 Una applicazione del modello di Fair Value Figura [1] Percorso Aleatorio del processo del tasso spot

69 69 Una applicazione del modello di Fair Value Figura [2] - Percorso Aleatorio del processo dellintensità istantanea di mortalità (per 1000)

70 70 Riserva Matematica e Fair Value del Contratto A Fair Value del contratto ed opzioni Anno di bilancio Contratto Base Componente Rivalutazione Opzione Minimo Garantito 4% Opzione di rendita Opzione di Riscatto Fair Value Contratto Riserva Matematica ,63471,39848, ,810, ,470, ,72651, , ,240, , , , , , ,370, , , , , , ,290, , ,17

71 71 Riserva Matematica e Fair Value del Contratto A1 Fair Value del contratto ed opzioni Anno di bilancio Contratto Base Componente Rivalutazione Opzione Minimo Garantito 2% Opzione di rendita Opzione di Riscatto Fair Value Contratto Riserva Matematica , ,80341,76971,010,00758,080, , ,69418, ,280, , , , ,71501, ,980, , , , ,27592, ,760, , ,57

72 72 Riserva Matematica e Fair Value del Contratto A2 Fair Value del contratto ed opzioni Anno di bilancio Contratto Base Componente Rivalutazione Opzione Minimo Garantito 0% Opzione di rendita Opzione di Riscatto Fair Value Contratto Riserva Matematica , ,0089,64957,510,00643,510, , ,40110, ,040, , , , ,24130, ,780, , , , ,68152, ,210, , ,73

73 73 Riserva Matematica e Fair Value del Contratto B Fair Value del contratto ed opzioni Anno di bilancio Contratto Base Componente Rivalutazione Opzione Minimo Garantito 4% Opzione di rendita Opzione di Riscatto Fair Value Contratto Riserva Matematica ,85451,88699, ,530, , , ,64622,41864, ,530, , , ,53798,58972, ,350, , , ,23951, , ,860, , ,07

74 74 Analisi di sensitività dellopzione di riscatto : Contratto A – senza OTA Minimo Garantito Coefficiente Penalità Riscatto 0,00%1,00%2,00%3,00%4,00%5,00%6,00% 0,00%309,12180,0572,888,440,00 1,00%200,8687,8720,580,840,00 1,50%149,6843,5212,500,00 2,00%116,0032,785,110,00 2,50%97,7320,970,00 3,00%72,5112,000,00 3,50%55,540,00 4,00%32,670,00

75 75 Analisi di sensitività dellopzione di riscatto : Contratto A Coefficiente Conversione Rendita Coefficiente Penalità Riscatto 0,00%1,00%2,00%3,00%4,00%5,00%6,00% 4,61%830,96371,46104,336,540,00 5,19%782,61355,45106,980,950,00 5,49%737,96340,4498,940,00 5,79%674,50311,2989,970,00 6,10%609,55266,4977,300,00 6,42%524,18232,7360,890,00 6,74%451,33195,7638,240,00 7,06%365,67148,1317,480,00

76 76 Analisi di sensitività dellopzione di conversione in rendita : Contratto A Minimo Garantito Coefficiente Conversione Rendita Opzione Rendita 0,00%4,61% 9,81 1,00%5,19% 80,33 1,50%5,49% 153,47 2,00%5,79% 242,06 2,50%6,10% 412,26 3,00%6,42% 571,18 3,50%6,74% 749,95 4,00%7,06% 1.005,00

77 77 Alcune considerazioni finali Implementazione di un modello di Rating per le compagnie vita

78 78 Passi operativi per limplementazione di un modello di Rating per le compagnie vita Specificazione modello matematico per il Fair Value della riserva matematica Coerenza con il principio IAS 39 Specificazione processi aleatori implicati dalle fonti di rischio tipiche della gestione assicurativa vita. Definizione approccio operativo Quantile Approach vs Cost of Capital. Calibratura coefficiente di sicurezza su dati di mercato.

79 79 Collegamento tra Security factor –probabilità di default e rating di impresa. È possibile fissare una relazione tra il livello di Security Factor (SF) e la probabilità di default, direttamente osservabile sul mercato, ovvero: essendo Prob_Default: la probabilità annua di default riferita ad una esposizione al rischio su T anni, per una data classe di rating, osservata sul mercato; T : una misura del tempo di esposizione al rischio della compagnia rispetto al tempo di run-off del portafoglio.

80 80 Ordinamento statistico del FV della riserva matematica

81 81 Calibratura Market Consistent del coefficiente di sicurezza RatingY1Y5Y10Y15 AAA0,0000,0960,4430,583 AA0,0100,2930,8151,276 A0,0410,5861,8312,847 BBB0,2742,8315,8248,320 BB1,11710,65318,29421,576 B5,38324,16132,37737,181 CCC/C27,02147,56053,04755,896 RatingY1Y5Y10Y15 AAA100,00099,90499,55799,417 AA99,99099,70799,18598,724 A99,95999,41498,16997,153 BBB99,72697,16994,17691,680 BB98,88389,34781,70678,424 B94,61775,83967,62362,819 CCC/C72,97952,44046,95344,104 Coefficienti di sicurezza Fonte: Standard & Poor's CreditPro®

82 82 Capitale Economico e Rating del portafoglio- Contratto A RatingSecurity FactorVaR Requisito di Capitale CTE Requisito di Capitale AAA 99,42% , , , ,53 AA 98,72% 9.794, , , ,21 A 97,15% 8.167, , , ,88 BBB 91,68% 5.618, , , ,27 BB 78,42% 2.663,62828, , ,77 B 62,82% 1.258,880, , ,54 CCC/C 44,10% 1.258,780, , ,60 FV Riserva1.363,47MdS96,95

83 83 Capitale Economico e Rating del portafoglio- Contratto A1 RatingSecurity FactorVaR Requisito di Capitale CTE Requisito di Capitale AAA 99,42% 8.635, , , ,22 AA 98,72% 7.655, , , ,88 A 97,15% 6.356, , , ,95 BBB 91,68% 4.164, , , ,41 BB 78,42% 1.730,360, , ,06 B 62,82% 646,790, ,58108,70 CCC/C 44,10% 646,710, ,800,00 FV Riserva758,08MdS88,22

84 84 Capitale Economico e Rating del portafoglio- Contratto A2 RatingSecurity FactorVaR Requisito di Capitale CTE Requisito di Capitale AAA 99,42% 7.867, , , ,45 AA 98,72% 6.908, , , ,81 A 97,15% 5.829, , , ,33 BBB 91,68% 3.837,640, , ,30 BB 78,42% 1.599,960, ,610,00 B 62,82% 568,270, ,530,00 CCC/C 44,10% 568,190, ,760,00 FV Riserva643,51MdS80,87

85 85 Capitale Economico e Rating del portafoglio- Contratto B RatingSecurity FactorVaR Requisito di Capitale CTE Requisito di Capitale AAA 99,56%18.983, , , ,67 AA 99,19%17.861, , , ,31 A 98,17%16.194, , , ,30 BBB 94,18%13.438, , , ,63 BB 81,71%9.766, , , ,37 B 67,62%7.499,800, , ,21 CCC/C 46,95%7.129,480, , ,46 FV Riserva7.220,17MdS262,45

86 86 Possibili sviluppi scientifici Management option Simulazione numerica, ottimizzazione stocastica e procedure di mitigazione del rischio Procedure di ottimizzazione e regole di allocazione del capitale di rischio Longevity Bond e applicazioni di finanza matematica al processo aleatorio

87 87 Referencees Bacinello A.R. (2003), Fair Valuation of a Surrender option Embedded in a Guaranteed Life Insurance Partecipating Policy, Journal of Risk and Insurance, 70 (3). Ballotta L., Haberman S. (2003), Guaranteed Annuity Conversion Options and their Valuation, Baione F., De Angelis P., Fortunati A. (2006), On a Fair Value Model For Partecipating Life Insurance Policies, Investment Management and Financial Innovations, 2, Business Perspectives Editor. Grosen A., Jorgensen P.L. (2001), Life Insurance Liabilities at Market Value, Working Paper Series n. 96, Center for Analytical Finance. Longstaff F. A., Schwartz E. S. (2001), Valuing American Options by Simulation: a Simple Least-Squares Approach, Review of Financial Studies 14, 1. Milevsky M. A., Promislow S. D. (2001), Mortality Derivatives and the Option to Annuitise, Mathematics & Economics, 29.


Scaricare ppt "Istituto Italiano Attuari Seminario 2 Dicembre 2008 Solvency II e forme assicurative rivalutabili: un confronto tra approccio standard e modello stocastico."

Presentazioni simili


Annunci Google