La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor a giunzione bipolare Inventato nel 1948-49, con.

Presentazioni simili


Presentazione sul tema: "LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor a giunzione bipolare Inventato nel 1948-49, con."— Transcript della presentazione:

1 LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor a giunzione bipolare Inventato nel , con ruoli diversi, da Bardeen, Brittain, Shockley. Valse loro nel 1956 il premio Nobel Lo scopo è di usare un piccolo ingresso per controllare una grande uscita  Controllo il flusso alzando o abbassando un bozzo sul fondo (BJT)  Inserisco un rubinetto che regola il flusso (FET) 1

2 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor bipolare: descrizione concettuale Essenzialmente consiste in un doppio diodo n + pn (o viceversa) La regione ad alto drogaggio (n + ) è chiamato emettitore, la regione p base e la regione n collettore N de >>N ab assicura che un piccolo cambiamento della corrente di base provoca un grande aumento della corrente di collettore 2

3 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor bipolare: descrizione concettuale EBJ la giunzione emettitore-base è polarizzata direttamente mentre la BCJ la giunzione base collettore è polarizzata inversamente Il BJT è detto essere polarizzato in modo diretto attivo. Quando gli elettroni sono iniettati dall'emettitore la gran parte di essi attraversa la base senza problema. A causa del forte campo base -collettore gli elettroni sono spinti via e formano la corrente di collettore (I=ev=e  F) Inoltre la superficie della BCJ è molto più grande della EBJ C'è poca ricombinazione Fattore B≤1 3

4 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Azione del Transistor: descrizione concettuale Rapporto di trasferimento di corrente Se il diodo è n + -p, la corrente di polarizzazione diretta è fatta essenzialmente dall'iniezione di elettroni nella zona p Questa corrente diretta può essere alterata da una piccola variazione del potenziale di polarizzazione diretta Portatori minoritari sulla giunzione pn Fattore di trasporto di base Efficienza di emettitore 4

5 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor bipolare: circuito tipico in polarizzazione diretta attiva Un piccolo cambiamento nella corrente di base causa un grande cambiamento nella corrente di collettore. L'amplificazione è data dal rapporto tra corrente di base e quella di collettore. La corrente di base è costituita da corrente di buche iniettata nell'emettitore I Ep e dalla corrente di buche che ricombinano nella zona della base (1-B)I En. Si è assunto che la giunzione pn base-collettore è fortemente polarizzata inversamente e quindi non dà corrente (di buche). La corrente di base che stiamo prendendo in considerazione è quella che entra (esce) dalla base (non quella che scorre nella base). Fattore di amplificazione di corrente Base-Collettore 5

6 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Polarizzazione del BJT Modo di operazioneEBJ biasCBJ bias SaturazioneDiretto (V EB <0)Diretto (V CB <0) Attivo direttoDiretto (V EB <0)Inverso (V CB >0) Cut-offInverso (V EB >0)Inverso (V CB >0) Attivo inversoInverso (V EB >0)Diretto (V CB <0) I diversi modi di operazione, singolarmente o più di uno insieme, vengono sfruttati nel funzionamento di diversi dispositivi Dispositivi a microonde Applicazioni di accensione - spegnimento Per tutto questo è importante capire le correnti bipolari che si generano 6 V EB =V B -V E

7 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Flussi di corrente Esaminiamo le varie correnti alla luce della teoria sulle giunzioni pn viste precedentemente. (Modo Attivo diretto) W b = W bn (dimensione dello strato neutro) V ij = V i -V j > 0 Polarizzato diretto Polarizzato inverso Le regioni di emettitore e collettore sono > L p → andamento exp La regione di base < L n → andamento quasi lineare (su entrambe le giunzioni) Dia

8 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Flussi di corrente W bn ≈ L b 8

9 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Flussi di corrente Approx al primo ordine non triviale Trascurando la corrente del diodo in polarizzazione inversa Base-Collettore 9

10 Relazioni generali corrente-voltaggio Pol Dirette per entrambe np e pn Guadagno di corrente in base comune (diretto attivo) LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis 10

11 Effetto Early o modulazione dell’ampiezza di base In un transistor ideale in configurazione di emettitore comune ci si aspetta che ad una data corrente di base I C sia indipendente daV EC per V EC > 0. Sarebbe così se potessimo assumere che l’ampiezza della base neutra (W) è constante. Ma poiché l’ampiezza della regione di carica spaziale che si estende nella regione della base varia con la tensione base-collettore, l’ampiezza di base è funzione della tensione base-collettore. La corrente di collettore dipende da V EC. All’aumentare della tensione inversa base-collettore,l’ampiezza di base si ridurrà. Ciò causa un aumento del gradiente di concentratione dei portatori minoritari e quindi un aumento della corrente di diffusione. L’amplificazione  aumenta ma questo non è auspicabile per il dispositivo. LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis 11

12 Avalanche breakdown La tensione base-collettore che il transistor può sostenere è limitata da fenomeni di rottura a valanga. Limite alla potenza che può essere ottenuta dal transistor. La rottura dovuta a ionizzazione di impatto si rispecchia nelle caratteristiche I-V. In configurazione di base-comune la rottura avviene a ben definite condizioni (tensione V CB limite) In configurazione emettitore-comune la rottura avviene a tensioni che sono modulate dal valore del parametro di ingresso. LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis 12

13 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Configurazioni operative del BJT Profilo delle bande e distribuzione dei portatori di minoranza per operazioni in saturazione, attiva diretta e cut-off In saturazione sia EBJ che CBJ sono polarizzate dirette e una grande densità di portatori di minoranza sono iniettati nella regione della base (importante per lo switching) In modo di cut-off sia EBJ che CBJ sono polarizzate inverse e non c'è densità di portatori di minoranza nella regione della base In modo di diretto attivo EBJ è polarizzata diretta e CBJ è polarizzata inversa. E' usato per amplificazione I C >> I B 13

14 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis I transistor bipolari possono essere polarizzati in tre diverse configurazioni ognuna con i suoi vantaggi. Nella configurazione di base comune il modo di cut-off avviene quando la corrente di emettitore è nulla. Per correnti I E non nulle il BCJ deve essere polarizzato diretto V BC <0 (~0,7V) per bilanciare le correnti iniettate dall'emettitore. Nel modo di emettitore comune si ha cut-off per correnti di base quasi nulle. Il EBJ non è più polarizzata diretta. La regione di saturazione occorre quando V CE = V BE ed entrambe le giunzioni sono polarizzate direttamente. In amplificazione di piccoli segnali il dispositivo opera in modo attivo con alta corrente o guadagno di potenza. In modo interruttore il dispositivo passa da cut-off (non conduttore) a saturazione (conduttore) Parametri di funzionamento statici 14

15 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Parametri del BJT Modo attivo diretto eV BE >> k B T eV CB >> k B T W b <

16 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Parametri del BJT Come scegliamo i parametri costruttivi del BJT Fattore di trasporto di base B ( Bassa ricombinazione) Come scegliamo i parametri costruttivi del BJT Efficienza di collettore  c E' il rapporto tra la corrente che raggiunge il collettore alla corrente base-collettore. Essendo la giunzione base-collettore fortemente polarizzata inversa tutta la corrente che giunge sulla giunzione è risucchiata nel collettore  c ~1 Come scegliamo i parametri costruttivi del BJT Guadagno di corrente  ≤1 non può esserci un vero e proprio guadagno in senso stretto 16

17 Risposta a segnali AC Piccolo segnale  l’ampiezza del segnale in frequenza (AC) è molto minore del segnale in continua (DC) La curva di carico ha pendenza –R L -1 e intercetta V CC Guadagno di corrente Base- Collettore g EB = I B /V BE conduttanza di ingresso g m =  g EB transconduttanza Ad alta frequenza occorre considerare i contributi capacitivi C EB capacità svuotamento e C d capacità di diffusione (giunzione EB polar. diretta) C CB capacità di svuotamento (giunzione CB polar. inversa) g EC conduttanza di modulazione di ampiezza di base (piccola conduttanza  grande resistenza) LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis 17 Bassa frequenza Alta frequenza Circuito equivalente

18 Risposta a segnali AC g m e g EC dipendono da  e quindi da . Il guadagno è costante solo a bassa frequenza f  =f     cut-off Frequenza di cut-off di base (/emettitore) comune f  (/f  ) frequenza per cui  si riduce a del Max Frequenza a cui |  =1 LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis 18

19 Tempo di risposta La frequenza f T è legata al tempo di risposta del dispositivo ovvero al tempo necessario per un portatore di transitare dall’emettitore al collettore. Questo include diversi contributi:  E ritardo dell’emettitore,  B tempo di transito della base,  C tempo di transito del collettore. Il più importante è il tempo di transito della base  B La distanza che percorrono i portatori minoritari nella base in un intervallo di tempo è dx = v(x) dt, dove v(x) è la velocità effettiva dei portatori minoritari nella base. Transistor per alte frequenze sono disegnati con uno spessore ridotto della base. Poiché la costante di diffusione elettronica è circa 3 volte superiore di quella delle buche, n-p-n sono preferiti. Un altro modo per ridurre il tempo di transito è di usare una base con drogaggio graduale (maggiore in prossimità dell’emettitore e minore verso il collettore) Il campo indotto aiuta il moto dei portatori riducendo il tempo di transito. LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis 19

20 Analisi dell’andamento di carica Comportamento del dispositivo in termini di cariche nelle diverse regioni e costanti di tempo legate al flusso di carica. In condizioni stazionarie la carica iniettata è costante ma abbiamo comunque una corrente I C (I B ) Modo diretto attivo Carica iniettata nella base (Area del triangolo dei portatori minoritari iniettata) Tempo di transito diretto verso il collettore Per la base ci sono due contributi alla corrente uno diffusivo (stazionario con  BF ) ed uno di accumulazione di carica dinamico Inoltre c’è una carica di giunzione che dipende dalla tensione di polarizzazione della giunzione LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis 20 IBIB Giunzione linear graded (se fosse abrupt sarebbe ½)

21 Analisi dell’andamento di carica Comportamento del dispositivo in termini di cariche nelle diverse regioni e costanti di tempo legate al flusso di carica. Modo in saturazione Tempo di transito inverso verso l’emettitore Combinazione dei due modi attivi. La capacità di giunzione è trascurabile perché la tensione di giunzione non cambia molto una volta raggiunta la condizione di saturazione Modo inverso attivo LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis 21

22 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis 22 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor bipolare come inverter Base della tecnologia digitale: circuiti logici La risposta non è istantanea t4t4 t4t4 LM Sci&Tecn dei Materiali A.A.2014/15 22 Spegnimento: Da regione di saturazione a instaurarsi di regione attiva t s =t 4 -t 2 Si neutralizza la saturazione Regione attiva inversa a cut-off t r =t 5 -t 4 Raggiunge la regione di cut-off Accensione: Da regione di cut-off a regione attiva t d =t 1 -t 0 EBJ e BCJ polarizzate inverse → regione attiva EBJ diretta. Carica della regione di Base Da regione attiva a saturazione t f =t 2 -t 1 Raggiunge la saturazione

23 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor bipolare come inverter Da cut-off a regione attiva t d =t 1 -t 0 t=t 0 V BE =0 V BC = - V CC =-5 V t=t 1 V BE =0,7V V BC =V BE - V CC =-4,3V =0,93 mA  Q=0,527 pC Da regione attiva a inizio saturazione t f =t 2 -t 1 t=t2 V BE =0,8 V BC =0,8 – 0,1=0,7 V t d =0,57 ns t f =1,97 ns t(ON)=2,54 ns 23 TTL

24 LM Sci&Tecn dei Materiali A.A.2014/15Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor bipolare come inverter Da saturazione a regione attiva t s =t 4 -t 3 Il transistor possiede una grossa saturazione di carica sulla base da estrarre per arrivare a BCJ polarizzata inversa Da regione attiva a cut-off t r =t 5 -t 4 t s =14,16 ns t r =15,6 ns t(OFF)=37,26 ns C'è ancora carica di svuotamento che va recuperata (t D ) =0,07 mA t 6 -t 5 =7,5 ns 24


Scaricare ppt "LM Sci&Tecn dei Materiali A.A.2014/15 Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor a giunzione bipolare Inventato nel 1948-49, con."

Presentazioni simili


Annunci Google