La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Analisi monovariata: frequenze Analisi monovariata: insieme di tecniche che prendono in considerazione una sola variabile alla volta. Essa è il punto di.

Presentazioni simili


Presentazione sul tema: "Analisi monovariata: frequenze Analisi monovariata: insieme di tecniche che prendono in considerazione una sola variabile alla volta. Essa è il punto di."— Transcript della presentazione:

1 Analisi monovariata: frequenze Analisi monovariata: insieme di tecniche che prendono in considerazione una sola variabile alla volta. Essa è il punto di partenza per tutte le analisi dei dati Il punto di partenza dellanalisi monovariata è la distribuzione di frequenza, ossia ad ogni modalità della variabile viene associata la frequenza con cui essa si presenta nella matrice-dati. ModalitàFrequenza Maschio325 Femmina254 Totale579 Distribuzione di frequenza della variabile sesso

2 Analisi monovariata: frequenze Esistono due tipi diversi di frequenze: le frequenze assolute e le frequenze relative Le frequenze assolute (tabella precedente) consistono nel semplice conteggio del numero di casi che presentano lo stesso valore (modalità), per la variabile prescelta. Generalmente le F.A. sono di difficile interpretazione, poiché non ci permettono di cogliere lincidenza delle singole modalità sullintera distribuzione della variabile (posso conoscere il numero di persone di sesso maschile, ma se non metto in relazione tale numero con il totale dei casi non posso affermare alcunché). Per questi motivi è più utile ricorrere alle frequenze relative, ossia quel tipo di frequenze che permette di annullare leffetto della numerosità dei casi.

3 Le frequenze relative si suddividono in quattro tipi: proporzioni, frequenze percentuali, cumulate, retro-cumulate. A seconda del tipo di variabile da analizzare, sarà possibile utilizzare parte o tutti i tipi di frequenze relative. Per tutte le variabili (nominali, ordinali e cardinali) è possibile calcolare: proporzione: frequenza assoluta numero totale dei casi frequenza percentuale: frequenza assoluta numero totale dei casi Analisi monovariata: frequenze relative X 100

4 Analisi monovariata: frequenze relative - 2 Esempio: Modalità Frequenze assolute Frequenze relative ProporzioniPercentuali Senza titolo300,0252,5 Lic. elementare5090,42442,4 Licenza media3420,28528,5 Diploma2640,22022,0 Laurea550,0464,6 Totale ,0

5 Se le variabili sono ordinali è possibile calcolare anche le percentuali cumulate e retro-cumulate. La frequenza cumulata relativa a una categoria indica quale numero (o percentuale) di casi non arriva alla categoria successiva o oltre; La frequenza retro-cumulata relativa a una categoria indica quale numero (o percentuale) di casi arriva a quella categoria o alle successive (cioè più alte nellordine) (Marradi, 2002). Analisi monovariata: frequenze relative -3

6 Analisi monovariata: frequenze relative - 4 Esempio: Modalità Frequenze assolute Frequenze relative PercentualiCumulate Retro- cumulate Senza titolo302,5 100,0 Lic. elementare50942,444,997,5 Licenza media34228,573,455,1 Diploma26422,095,426,6 Laurea554,6100,04,6 Totale ,0 Interpretazione: gli individui che al massimo hanno la licenza media sono il 73,4% gli individui che hanno almeno il diploma sono il 26,6%

7 Analisi monovariata: frequenze relative - 5 Esempio: Modalità Provincia di MilanoProvincia di Bergamo PercentualiCumulate Retro- cumulate PercentualiCumulate Retro- cumulate Senza titolo7,0 100,07,2 100,0 Lic. elementare22,329,393,028,936,292,8 Licenza media30,960,270,734,871,063,8 Diploma29,689,839,823,494,429,0 Laurea10,2100,010,25,6100,05,6 Totale100,0 Interpretazione ??? Fonte: Censimento ISTAT

8 Analisi monovariata: tabelle - 1 Presentazione tabellare delle distribuzioni di frequenza: Parsimonia: inserire solo le informazioni indispensabili (indicare solo un tipo di frequenza (assoluta, relativa, percentuale, etc…) Numerosità dei casi: nel caso si utilizzino le frequenze percentuali (più usate) è necessario indicare il numero complessivo dei casi in valore assoluto (N) Utilità delle percentuali: non usare le frequenze percentuali se N è minore di 50 casi (riportare le percentuali se si vuole comparare più distribuzioni di frequenza) Fallacy of the misplaced precision: evitare la tendenza a riportare percentuali con un numero eccessivo di decimali, ma riportare solo quelli strettamente necessari. Una possibile regola, suggerita da Marradi (2001), è la seguente: se N casi 1 cifra decimale se N casi 2 cifre decimali Arrotondamenti corretti: da 0 a 4 arrotondamento per difetto (16,73 16,7) da 6 a 9 arrotondamento per eccesso (34,27 34,3) se 5 controllare il decimale successivo (se 16,75 è arr. di 16,752 16,8; se 16, 75 è arr. di 16,748 16,7; se 16,75 non è arr. arrotondamento sia per eccesso che per difetto) Usare con cautela: la decisione è da prendere sempre a seconda dei casi; evitare comunque di usare troppi decimali

9 Analisi monovariata: tabelle - 2 Modalità% Senza titolo2,5 Lic. elementare42,4 Licenza media28,5 Diploma22,0 Laurea4,6 Totale100,0 (N=1.200) Fonte o, se survey, domanda del questionario Tabella 1 – intestazione (es. titolo di studio) Ricordarsi sempre di intestare la tabella e di inserire la fonte o, se i dati sono stati raccolti autonomamente, la domanda corrispondente ordine delle modalità: V. nominali: libera scelta, a seconda delle necessità di presentazione (es. frequenze decrescenti) V. ordinali: utilizzare lordine delle modalità (es. tab. 1 – NO freq. decrescenti) V. cardinali: molte modalità, sintesi necessaria raggruppamento di valori Modalità% anni14, anni20, anni30, anni33,9 Totale100,0 (N= ) Modalità% 20 anni2,7 21 anni2,7 22 anni2,9 23 anni3,0 24 anni3,4 …… Fonte: demo.istat.it – Milano 2007

10 Analisi monovariata: grafici - 1 Presentazione grafica delle distribuzioni di frequenza: Le rappresentazioni grafiche sono molteplici. Esse non veicolano informazioni aggiuntive rispetto alle tabelle (spesso è, anzi, il contrario), ma hanno maggiore impatto comunicativo, soprattutto verso un target con scarse competenze numeriche. Prima di procedere alla creazione di un grafico, è necessario conoscere il tipo di variabile che si vuole rappresentare: nominale, ordinale o cardinale. Ogni tipo di variabile può essere rappresentata solo con alcune forme di grafici; in caso contrario si corre il rischio di veicolare informazioni fuorvianti, se non addirittura scorrette. Le rappresentazioni grafiche si dividono in due famiglie: le rappresentazioni lineari e le rappresentazioni circolari. Ogni famiglia ha pregi e difetti, da valutare caso per caso.

11 Analisi monovariata: grafici - 2 Rappresentazioni grafiche lineari – diagrammi a barre Variabili nominali Vantaggi: sono semplici da disegnare consentono unagevole comparazione tra le frequenze delle varie modalità sottolineano lautonomia semantica delle modalità Svantaggi: è difficile comparare una singola modalità con lintera distribuzione difficile aggregazione ad occhio di categorie adiacenti (es. cattolico + protestante) (NO con variabili ordinali perché le barre distanti non danno lidea che ci sia una continuità tra le modalità, come accade invece con le variabili ordinali – meglio listogramma).

12 Analisi monovariata: grafici - 3 Rappresentazioni grafiche lineari – istogramma Variabili ordinali e cardinali (ricodificate) Vantaggi: è semplice da disegnare facilita la comparazione tra frequenze di categorie contigue è possibile utilizzare anche con variabili cardinali ricodificate (es. classi di età) Svantaggi: suggerisce un ordine tra le categorie, tale da renderlo poco utile per rappresentare variabili con forte autonomia semantica delle categorie (nominali) difficile definire il rapporto tra una modalità e lintera distribuzione

13 Analisi monovariata: grafici - 4 Rappresentazioni grafiche lineari – istogramma di composizione Variabili ordinali e cardinali (ricodificate) Vantaggi: costringe chi lo osserva a tener conto della ridotta autonomia semantica delle categorie permette di cogliere lincidenza di una modalità sulla distribuzione totale Svantaggi: non può essere usato per le variabili nominali rende difficile il confronto tra due modalità

14 Analisi monovariata: grafici - 5 Altre rappresentazioni grafiche lineari Spezzata a gradini: utile se si vuole presentare le frequenze cumulate di una variabile almeno ordinale Diagramma a bandiera: utile per confrontare la distribuzione di frequenza di una variabile in due sottopopolazioni diverse (es. sesso) è possibile usarlo per ogni tipo di variabile (preferibile ordinale o cardinale) Freq. cumulate

15 Analisi monovariata: grafici - 6 Rappresentazioni grafiche lineari – variabili cardinali Caratteristiche: poligono di frequenza: ogni punto indica lincrocio tra uno dei valori assunti dalla variabile e la frequenza con cui tale valore si distribuisce poiché la variabile non può assumere tutti i valori (x R), non può essere considerata una curva, ma solo una spezzata con il poligono di frequenza è possibile rappresentare variabili cardinali con molte modalità (es. reddito nazione); in caso di poche modalità è possibile usare altri tipi di rappresentazione (istogramma, istogramma di composizione, spezzata a gradini, diagramma a bandiera) Frequenza Età

16 Analisi monovariata: grafici - 7 Rappresentazioni grafiche circolari Vantaggi: suggeriscono meno un certo ordine fra le categorie, quindi sono più adatte per variabili con categorie non ordinate permette di cogliere lincidenza di una modalità sulla distribuzione totale facilita laggregazione ad occhio di due modalità adiacenti Svantaggi: può suggerire un ordine tra le modalità se costruito male (es. gradazione di colori o tratteggi simili) non si possono usare per variabili con molte modalità Variabili nominali Diagramma a torta

17 Analisi monovariata: grafici - 8 Rappresentazioni grafiche – alcuni accorgimenti come per le tabelle, si ritiene sia più opportuno utilizzare le frequenze percentuali; se possibile, inserire il valore di N nella didascalia. è opportuno inserire le informazioni sui dati mancanti anche nelle rappresentazioni grafiche, evidenziandone tuttavia la differenza rispetto alle altre modalità Nel diagramma a torta è meglio inserire le etichette e le percentuali vicino o sopra gli elementi grafici, rispetto alluso di legende.

18 Analisi monovariata: grafici - 9 Rappresentazioni grafiche – alcuni accorgimenti - 2 è opportuno ragionare correttamente su quale scala utilizzare in ascissa (frequenze perc.), poiché essa può influenzare linterpretazione del grafico Lesempio b. è probabilmente il più neutro, mentre il primo (a.) tende ad appiattire tutte le frequenze verso il basso, mentre il c. dà risalto alle frequenze più alte nel caso la distribuzione presenti una modalità con alta frequenza, può essere opportuno inserire un segno di discontinuità per sottolineare lo stacco (es. d.)

19 Contatti Domingo Scisci Università di Milano-Bicocca Via Bicocca degli Arcimboldi Milano Edificio U7/II Piano Stanza 207 Telefono: Mail: Quest'opera è stata rilasciata sotto la licenza Creative Commons Attribuzione-Non commerciale-Condividi allo stesso modo 2.5 Italia. Per leggere una copia della licenza visita il sito web o spedisci una lettera a Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.


Scaricare ppt "Analisi monovariata: frequenze Analisi monovariata: insieme di tecniche che prendono in considerazione una sola variabile alla volta. Essa è il punto di."

Presentazioni simili


Annunci Google