La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

La rete di distribuzione del futuro: Smart Grids Roma, 10/06/2015.

Presentazioni simili


Presentazione sul tema: "La rete di distribuzione del futuro: Smart Grids Roma, 10/06/2015."— Transcript della presentazione:

1 La rete di distribuzione del futuro: Smart Grids Roma, 10/06/2015

2 2 Enel Distribuzione 2014  Clienti:  Clienti Passivi connessi (Y2014)  Generazione Distribuita connessa (Y2014):  DGs connessi al 2014  Market share - Clienti Dimensione del Business 31.6 M 2.3 GW 0,6 GW (52.000) %  Personale: La Società  km di linee: MT km; BT km  cabine AT/MT, tutte controllate da remoto  cabine MT/BT, 30% controllate da remoto  28 Centri di Controllo La Rete

3 3 Enel Distribuzione sul territorio Macro Area Territoriale Nord Ovest Macro Area Territoriale Nord Est Macro Area Territoriale Nord Centro Macro Area Territoriale Nord Sud 11 Distribuzioni Territoriali Rete  Piemonte e Liguria  Lombardia  Triveneto  Emilia Romagna e Marche  Toscana e Umbria  Lazio, Abruzzo e Molise  Sardegna  Campania  Puglia e Basilicata  Calabria  Sicilia 11 Distribuzioni Territoriali Rete  Piemonte e Liguria  Lombardia  Triveneto  Emilia Romagna e Marche  Toscana e Umbria  Lazio, Abruzzo e Molise  Sardegna  Campania  Puglia e Basilicata  Calabria  Sicilia

4 Traditional Power Network

5 Cost reduction of conversion and generation technologies Spread of DGs randomly located on the grid with randomly injection of power Feed in Tariff for green energy production Distributed Generation Necessary evolving of power lines

6 6 Bio&Waste Solare Eolico Potenza connessa (GW) 3,9 16,5 2,5 NORD-EST connessioni MW SUD connessioni MW CENTRO connessioni MW NORD-OVEST connessioni MW connessioni MW 1,1 Hydro 2,2 Non-RES 26,2 Rete Italia 2014 Distributed Generation

7 “The Smart Grid will be a customer-centered, interactive, reliable, flexible, optimal, economical, economically responsive and, ultimately, a sustainable and environmentally responsible electrical power generation and distribution system. Electric utilities must play a key role in its development.” Smart Grid Technology Innovation Group Report, Tokyo Summit 2010 Why Smart Grids are requested

8 Towards intelligent networks

9 Improving Power Quality Increase efficiency of power systems Reducing pollution Reducing system losses Supporting large-scale penetration of small-scale DGS Reducing primary energy consumption Creation of green jobs Implementing Smart Grids Advantages

10 Network devices potentially critical Feeder circuit breakers Protection devices Conductors On Load Tap Changer (OLTC) Critical issues in the electrical network management system Voltage regulation Harmonic pollution Grid disconnection Islanding Implementing Smart Grids Critical items

11 Optimal voltage regulation is one of the main issues to address in a Smart Grid context Voltage regulation

12 12 Traditional Voltage Regulation On Load Tap Changing Transformer Traditional Voltage Regulator Strategies applied in MV distribution systems could be not able to manage high penetration of DG plants  Not able to manage active feeder  Fail when the HV/MV power flow partially or completely reverses

13 13 Energy Storage System  Renewable sources integration  Peak load leveling  Power quality improvement  Islanding operation One possible solution

14 14 Energy Storage System What kind of storage  Pumping Hydro  Electrochemical  Compressed air  Super-capacitor  SMES  Fuel cell Short-Term Response Energy Storage (Seconds) Long-Term Response Energy Storage (Hours) Real Long-Term Response Energy Storage (Days) Seconds Hours Days MWh [MW] [Time]

15 15 Simulation A power flow problem  1 HV/MV Transformer (25MVA)  12 MV buses (2 dedicated to DGs)  366 nodes  PVGIS model  Annual load curve  PV nominal power installed 23MW  MatPower environment

16 16 Simulation results January PV production Power flow Power absorption Power (MW) Time (h)

17 17 Simulation results February PV production Power flow Power absorption Power (MW) Time (h)

18 18 Simulation results April PV production Power flow Power absorption Power (MW) Time (h)

19 19 Simulation results August PV production Power flow Power absorption Power (MW) Time (h)

20 20 Islanding “A condition in which a portion of the utility system that contains both loads and distributed resources remains energized while isolated from the remainder of the utility system”. (IEEE Std )

21 21 Why islanding occurs IEEE Std In this case normal protections does not stop the DG to energized the Point of Common Coupling (PCC ) Line disconnection + Power balance between source and load High probability that Islanding occurs

22 22  Safety issues for the line workers  Distributed inverters and generally customers devices could be damaged  Responsibility of DSO towards customers Islanding Critical items

23 23 How Islanding occurs Feeder circuit breaker: off Feeder circuit breaker: on MV/LV substation micro-grids

24 24 Implemented Smart Grids technologies Smart Metering Infrastructure:  Remote meter reading and mgt  LV monitoring and Outages Mgt  Fraud detection and balancing  Reliable billing  Fast switching  Data validation and settlement  Active Demand and VAS enabled (Smart Info) Network Management:  Remote Control and Automation  Monitoring in real time  Planning and Maintenance  Information Exchange with the TSO  Information Exchange with PA EV charging infrastructure Mgt:  Monitoring and control of charging process  Interoperable and Multivendor EV charging  Vehicle-to-Grid and VAS enabled  Load Shaping, load flexibility DER Integration:  DER monitoring  Forecasting  Information Exchange with the TSO  DER control  Voltage regulation  Local Dispatching  Storage

25 E-Mobility Main projects in Italy Infrastrutture di Ricarica in Italia, in Europa Accordo Roma Capitale-Enel-Acea Roma Interoperabilità con Acea Progetto Regione Emilia-Romagna Bologna, Reggio Emilia, Rimini, Piacenza, Ferrara, Ravenna, Forlì, Cesena,Parma,Maranello,Formigine,Modena,Imola Interoperabilità con Distributori Hera ed Iren E-Mobility Italy Roma, Milano, Pisa Primo progetto in Italia. Partnership Enel-Mercedes Smart City Bari, Genova, L’Aquila Mobilità Elettrica per le Smart Cities Progetti Europei Enel – Poste Italiane Fornitura di oltre 400 Infrastrutture di ricarica Consegna della posta a “Zero emissioni” 25 Progetto Umbria 13 città d’arte (Assisi,Orvieto,Perugia. Spoleto…) Interoperabilità con ASM Terni Protocollo Ikea Infrastrutture di ricarica in tutti gli store italiani (Rete Pubblica) Protocollo Enel Eni Infrastruttura Fast Recharge presso Eni Station su superstrade e autostrade. Prima installazione Pomezia Siena Fornitura 43 infrastrutture per rete pubblica Progetto Hinterland di Milano Assago, Rho, San Donato Milanese, Segrate, Sesto San Giovanni, Interoperabilità con Disiributore A2A Matera – Capitale Europea della Cultura Protocollo per mobilità convergente con Brindisi (Aeroporto) e Lecce

26 Durata : Durata : PIANO OPERATIVO INTERREGIONALE Durata : PROGETTO ISERNIA Durata : Enel Smart grids Main projects in Italy 26 Durata : maggio – ottobre 2015 PIANO OPERATIVO REGIONALE POR CAMPANIA Durata : L’AQUILA SMART CITY Durata: Proposal under evaluation Durata : PUGLIA ACTIVE NETWORK

27 27 Enel Distribuzione for EXPO 2015 Smart Grid  Operation Center to monitor and control all the electrical parameters  Innovative control and fault detection system for management and operation of the electricity distribution network  Storage System and integration of renewable energy sources  Enel electric mobility infrastructure (with Pole Charging Stations) to recharge the Expo Electrical Vehicles  lighting points LED technologies with high efficiency

28 28 Active Energy Management The Site

29 29 EXPO 215 Feeding the planet energy for life


Scaricare ppt "La rete di distribuzione del futuro: Smart Grids Roma, 10/06/2015."

Presentazioni simili


Annunci Google