La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

6 Febbraio 20061 Stato (di parte) della costruzione e del software di MEG 1. LXe cal. (PMT +criostato) 2. Elettronica di read-out 3. Acceleratore 4. MC.

Presentazioni simili


Presentazione sul tema: "6 Febbraio 20061 Stato (di parte) della costruzione e del software di MEG 1. LXe cal. (PMT +criostato) 2. Elettronica di read-out 3. Acceleratore 4. MC."— Transcript della presentazione:

1 6 Febbraio Stato (di parte) della costruzione e del software di MEG 1. LXe cal. (PMT +criostato) 2. Elettronica di read-out 3. Acceleratore 4. MC + offline 10 min. 30 min.

2 6 Febbraio Test PMT a Pisa (+PSI nel LP) iniziata l’istallazione nella struttura di supporto (gia’ al PSI) Test di tutti i PMT praticamente terminato (Pisa+PSI): iniziata l’istallazione nella struttura di supporto (gia’ al PSI) n.di PMT provati in f. del tempo nella facility Nel LP, per la misura delle QE dei PMT e’ stato fondamentale lo sviluppo del MC e dell’offline Articolo sulla facility quasi pronto per NIM

3 6 Febbraio 20063

4 4 Simulazione e analisi LP Simulation of alpha sources on wires (  = 50  m) inside the LP Black: Data Red: MC R. Pazzi, G. Signorelli Confronto tra posizione simulata e ricostruita delle sorgenti alfa Confronto tra carica simulata e ricostruita vista dai PMT in f. della distanza dalle sorgenti Dati simulati e analizzati per 220 PMT (25% del calo.finale) con i programmi illustrati tra un po’

5 6 Febbraio Ritardo di 4 mesi nella consegna al PSI del criostato (Dicembre  Maggio) (ritardo della SIMIC) Costruzione seguita settimanalmente da Raffaelli/Del Frate ma con scarsa soddisfazione (ulteriori ritardi??!!)

6 6 Febbraio Gia’ cosi’: inizio presa dati a fine agosto/inizio settembre mentre potremmo prendere dati prima! For an Italian contribution of 80,4 million Euros, Italy has received orders for 85 millions and 2005 will shut up in an even more positive way” says Sandro Centro. In particular Italy, with Ansaldo Superconduttori, excels in the building of one third of 1200 magnetic dipoles of Lhc, and with Simic in the production of the 75% of cryostats, which contain the cold masses of the dipoles. Dalla pagina web dell’INFN: Italy at CERN (nov. 2005)

7 6 Febbraio Read-out : necessita’ del DRS3... Range dinamico (0.5 V) Dipendenza dalla temperatura Scarica dei condensatori non perfetta (2%) (dicembre 2005) DRS2 ok per il tempo ma: utilizzo FADC del trigger per la carica ? Un mese di presa dati nel 2006 = in sensibilita’! 1 ordine di grandezza sotto a MEGA

8 6 Febbraio Utilizzo delle schede di trigger per la misura della carica Da produrre (type 1 mod.): 30 (/50 tipo 1) Costo /scheda: €1200  36 K€ Crate, interf., cpu: 2 x €13000 Costo totale: 62 K€ 1.FADC a 100 MHz commerciali. Q: 12 bit equivalenti 2.Problema fan-in 4  1 (612/846) Da ordinare ora. Utilizzo di 20 K€ per calibrazioni (sblocco s.j. 10 K€ capp Pisa) + prestito dotaz. I (reintegrazione successiva)

9 6 Febbraio Acceleratore: test a Legnaro NaI Energy Resolution  (E)/E = % (at 17.6 MeV) I ~ 90 nA T p = 500 keV Rate R = 100 Hz Bersagli di LiF e B costruiti a Genova Ordine italiano CW: inviato il 19/1 Ordine americano restante parte CW inviato ma problemi di termini di pagamento

10 6 Febbraio Status del software di MEG a. Simulazione MC - Stato - Responsibilita’ b. Offline - Caratteristiche del framework - Stato di sviluppo del codice - Responsibilitia’ c. Computing power and data storage - Risorse disponibili al PSI; - Stima delle necessita’ con e senza pre-selezioni - Piano di utilizzo delle risorse

11 6 Febbraio a. MC Simulation

12 6 Febbraio MC Structure MEGEVE - Event Generator; MEGEVE - Event Generator; GEM – The GEANT3 based detector simulator: GEM – The GEANT3 based detector simulator: – Liquid Xenon Calorimeter; – Drift Chamber; – Timing Counter; – Magnet and Target. Code organized in modules, as OO classes; Code organized in modules, as OO classes; LP & Beam Test fully simulated; LP & Beam Test fully simulated; Code management under SVN; Code management under SVN; MC code almost ready for production tests. MC code almost ready for production tests.

13 6 Febbraio Energy release in LXe Positron track Hits on TC

14 6 Febbraio MEGEVE: the Event Generator StatusStatus –Signal events; –Michel positrons; –Radiative decay (RD): –Positron annihilation in flight (AIF): Preliminary AIF within target;Preliminary AIF within target; Started study for realistic AIF: magnet, DCH, TC and Target.Started study for realistic AIF: magnet, DCH, TC and Target. –Scheme to generate pile-up events: (Michel + RD, Michel + AIF, AIF + RD, RD + RD) + additional Michel decays; more than two events can be overlaid; RD + RD) + additional Michel decays; more than two events can be overlaid; -CPU time: 16 sec/event, dominated by scintillation photon tracking (will be improved). (will be improved). – Interactive version (GXINT) recently implemented. NextNext –Realistic AIF and background studies (under way); –Study of online/offline pre-selection and calibrations (under way); Man Power: P.Cattaneo (Pv), F.Cei (Pi), K.Ozone (Tokyo), Y.Hisamatsu (Tokyo), R.Sawada (Tokyo), V.Tumakov (UCI), S.Yamada (UCI)

15 6 Febbraio MEGEVE: Esempio di studio dei fondi Realistic studies of Michel positron annihilation in flight. Complete detector simulation (not the target only). Main contributions from target and drift chambers. Annihilation  energy spectrum in LXe Preliminary Work

16 6 Febbraio GEM:LXe Calorimeter StatusStatus –Geometry: final shape implemented for vessel, PMT holders & honeycomb; –Implemented decay curve and wavelength spectrum of LXe scintillation; –GEANT based (as Cerenkov photons) scintillation photon tracking: Reflection/refraction on PMT quartz window and PMT holders;Reflection/refraction on PMT quartz window and PMT holders; PMT quartz window transmittance;PMT quartz window transmittance; Absorption and scattering in Liquid Xenon.Absorption and scattering in Liquid Xenon. –Outputs: Energy deposit, position and timing in Liquid Xenon;Energy deposit, position and timing in Liquid Xenon; Preliminary waveform output: hit timing of scintillation photonsPreliminary waveform output: hit timing of scintillation photons for each PMT ( ~ 8 x MeV, Q.E. = 16%). for each PMT ( ~ 8 x MeV, Q.E. = 16%). NextNext –Implement cryostat supporting structure; –“Fast” scintillation photon tracking. Man Power: S.Yamada(UCI), K.Ozone(Tokyo), F.Cei(Pi), Y.Uchiyama(Tokyo)

17 6 Febbraio GEM: Drift Chambers Man Power: H.Nishiguchi (Tokyo), K.Ozone (Tokyo), Y.Uchiyama (Tokyo), M.Hillebrandt (PSI) M.Hillebrandt (PSI) StatusStatus –Geometry: DCH geometry completed;DCH geometry completed; wires and vernier pads simulated;wires and vernier pads simulated; cables, cable duct implemented.cables, cable duct implemented. –Isochrones tables for various B-field (Garfield); –Outputs: Entrance/Exit position from chambers;Entrance/Exit position from chambers; Energy, timing and direction for each hit;Energy, timing and direction for each hit; Drift time in chambers.Drift time in chambers. NextNext - Implement charge and timing signal simulation on wires & pads and - Implement charge and timing signal simulation on wires & pads and waveform digitization (under way). waveform digitization (under way).

18 6 Febbraio GEM: TC/Beam/Magnet StatusStatus –Geometry: scintillation bars/fibers, PMTs, APDs, photodiodes, light guides. –Outputs: Hit position, timing and energy; energy, position & step length for hits;Hit position, timing and energy; energy, position & step length for hits; Waveform output for scintillation bars.Waveform output for scintillation bars. –Photon propagation based on analytical formula NextNext –Implement supporting structure. –Improve light transmission in fibers Timing Counter Man Power: P.Cattaneo (Pv), (V.Tumakov (UCI), F.Xiao(UCI)) Beam/Magnet Man Power: K.Ozone (Tokyo), W.Ootani (Tokyo) StatusStatus - Realistic treatment of target geometry and muon phase space. - Realistic treatment of target geometry and muon phase space. NextNext –Implement target support and the beam transport within the detector.

19 6 Febbraio MC responsibilities Coordination: F.Cei (Pisa), S.Yamada (UCI)Coordination: F.Cei (Pisa), S.Yamada (UCI) Code management: P.Cattaneo (Pavia), S.Yamada (UCI)Code management: P.Cattaneo (Pavia), S.Yamada (UCI) Event generator: F.Cei (Pisa), Y.Hisamatsu (Tokyo)Event generator: F.Cei (Pisa), Y.Hisamatsu (Tokyo) LXe calorimeter: F.Cei (Pisa), R.Sawada (Tokyo), S.Yamada (UCI)LXe calorimeter: F.Cei (Pisa), R.Sawada (Tokyo), S.Yamada (UCI) Timing Counter: P.Cattaneo (Pavia)Timing Counter: P.Cattaneo (Pavia) DCH: H.Nishiguchi (Tokyo)DCH: H.Nishiguchi (Tokyo) LP/Beam test: R.Pazzi (Pisa), R.Sawada (Tokyo)LP/Beam test: R.Pazzi (Pisa), R.Sawada (Tokyo) Trigger: D.Nicolo’ (Pisa), Y.Hisamatsu (Tokyo)Trigger: D.Nicolo’ (Pisa), Y.Hisamatsu (Tokyo)

20 6 Febbraio b. Offline

21 6 Febbraio Offline framework The offline framework: ROME Root based Object Oriented Midas Environment is the object oriented framework adopted for the MEG on-line. It is under development at PSI and it was tested during October 2004 test beam.

22 6 Febbraio ROME is a framework generator.ROME is a framework generator. Only 6 different objects.Only 6 different objects. All classes are generated, only event methods have to be written by the detector experts.All classes are generated, only event methods have to be written by the detector experts. No knowledge about object oriented programming needed;No knowledge about object oriented programming needed; detector analysis codes are written in C (not C++). detector analysis codes are written in C (not C++). Interface with MYSQL database.Interface with MYSQL database. Separated into:Separated into: an experiment independent part of the framework an experiment independent part of the framework e.g. Event loop, IO; e.g. Event loop, IO; an experiment dependent part of the framework an experiment dependent part of the framework e.g. Data structure, program structure. e.g. Data structure, program structure.

23 6 Febbraio ROME Objects Folders Data objects in memory Tasks Calculation objects Trees Data objects saved to disc Histograms Graphical data objects Steering Parameters Framework steering Midas Banks Midas raw data objects Folders and Tasks support a very clear program structure. Modularity: tasks can be changed even at runtime.

24 6 Febbraio Interconnections Folders Tasks Fill Read Trees Fill Flag Histograms Fill Disk (Output) Write (ROOT) Disk (Input) Read (MIDAS, ROOT)

25 6 Febbraio ROME as LP test beam framework ROME as LP test beam framework Application of ROME as an off-line framework in connection with MIDAS (on-line) and SQL database. MIDAS: data taking slow control slow control data logging data logging run control run control ROME : on-line monitoring off-line analysis off-line analysis SQL : channel information geometry information geometry information calibration constants calibration constants

26 6 Febbraio Offline Analysis Procedure (beam test) BoR EoR Event trigger mode channel info. geometry info. calibration data processed data calibration Before a Run calibration run number

27 6 Febbraio Software scheme for final detector MC (geant) event generation tracking detector simulation 1.Bartender simulate pileup electronics and trigger 2.Analyzer DAQ ZEBRA ROOT MIDAS ROOT Bartender and Analyzer are ROME based softwares. They are standalone programs which read data and write results in ROOT files. Database

28 6 Febbraio Software Codes 1) Bartender ROOT based program for ROOT based program for Event Cocktail; Event Cocktail; Read experimental and simulation data; Read experimental and simulation data; Make mixture of several MC sub events; Make mixture of several MC sub events; Simulation of pulse shape of MC data (digitization); Simulation of pulse shape of MC data (digitization); Rearrange channels of experimental data to make them as MC. Rearrange channels of experimental data to make them as MC. Possible simple calibration; Possible simple calibration; Possible trigger simulation. Possible trigger simulation. Analyzer

29 6 Febbraio Software Codes 1) Bartender (cnt.) += Nphe = 620 Nphe = 123 Example: LXe calorimeter waveform pile-up  three possible models of single waveform;  gaussian, sinusoidal or constant noise can be added;  event rate can be specified;  relative timing is extracted randomly.

30 6 Febbraio Software Codes 2) Analyzer - Software code initially developed to analyze beam test data; analyze beam test data; - It can read ZEBRA and ROOT files from Bartender; from Bartender; - Code development going on; work done about on waveform decoding. on waveform decoding. - Algorithms ready in Fortran; to be translated in C.

31 6 Febbraio Offline Responsibilities Coordination/framework: R.Sawada (Tokyo), M.Schneebeli (PSI) Database: R. Sawada (Tokyo) Analyzer: LXe: Y.Uchiyama (Tokyo), R.Sawada (Tokyo), G.Signorelli (Pisa) DCH: M.Schneebeli (PSI), H.Nishiguchi (Tokyo), (P.Huwe (UCI)) TC: D.Zanello (Rome), (F.Xiao (UCI))

32 6 Febbraio c. Computing : available PSI vs needs 1.Storage – 2. CPU power – 3. Network  PSI  MEG needs (Data, MC; CPU:  Data reduction)  Summary: PSI vs MEG needs

33 6 Febbraio PSI: 1. Storage resources Tape archive system (R. Egli, PSI Computing Center)

34 6 Febbraio PSI: 2. CPU (+fast access disks) resources Analysis computer cluster Available disk space 10 Tb Maximum number of CPU’s 64

35 6 Febbraio PSI: 3. Network resources Network infrastructure

36 6 Febbraio MEG needs: 1. Storage – DATA  Trigger conditions: - QSUM > 45 MeV (1) -  T(LXe – TC) = 10 ns (2) - Angular correlation ~ 15 o (3) (to be checked more precisely)  Event rate R: 10 8   /s  2 x 10 3 s -1  2 x 10 2 s -1  20 s -1 (1) + solid angle (2) (3) (1) + solid angle (2) (3) With a lower muon stopping rate, the rate reduction is roughly proportional to the square of the reduction factor  R ~ 3  6 s -1 for 3 x 10 7   /s R ~ 3  6 s -1 for 3 x 10 7   /s DATA without reduction DATA without reduction

37 6 Febbraio In one year (10 7 s) of data taking: 3  6 x 10 7 events (2 x 10 8 using 10 8  + /s) How many waveforms ? Expected occupancy: 50 % for LXe (~ 450 wfm), 20 % for DCH (~ 300 wfm), 20 % for DCH (~ 300 wfm), 20 % for TC (~ 20 wfm) 20 % for TC (~ 20 wfm)  ~ 800 waveforms/event (2 bytes/channel)  ~ 10 (10  11) waveforms/year, 1.6 Mb/event DATA without reduction (Cnt.) With a factor 10 compression: 5  10 Tbyte/year

38 6 Febbraio MEG needs: 1. Storage – MC  MC event samples: 2 x 10 7 correlated events/year + 2 x 10 7 correlated events/year + two independent samples (10 6 positrons & 10 6 photons) to be two independent samples (10 6 positrons & 10 6 photons) to be merged for generating accidental background (in principle, up to merged for generating accidental background (in principle, up to events) events). To reduce problems of multiple disk accesses, MC events must To reduce problems of multiple disk accesses, MC events must be duplicated (x 2 correlated, x 20 accidental). Copy! be duplicated (x 2 correlated, x 20 accidental). Copy!  Event size based on LXe (photon arrival times) and TC information:  200 kb/event (noise not included).  200 kb/event (noise not included).  Data storage: - (200 kb/event x 2 x 10 7 x 2) = 8 Tb/year (correlated events); - (200 kb/event x 2 x 10 7 x 2) = 8 Tb/year (correlated events); - (200 kb/event x 2 x 10 6 x 20) = 8 Tb/year (uncorrelated - (200 kb/event x 2 x 10 6 x 20) = 8 Tb/year (uncorrelated events); + factor 3 for digitization: events); + factor 3 for digitization: TOTAL ~ 50 Tb/year TOTAL ~ 50 Tb/year

39 6 Febbraio MEG needs: 2. CPU time needed for event reconstruction  DCH: 200  250 msec/event for a five track event (Kalman filter); (Kalman filter);  LXe: 100  200 msec/event (LP data extrapolation);  TC & merging: unknown, but probably small;  (DCH + LXe + TC + merging) ~ 0.5 sec/event  (DCH + LXe + TC + merging) ~ 0.5 sec/event  Waveform fitting: ~ 10 sec/event  For 6 x 10 7 events: (DCH+LXe+TC+merging) ~ 3 x 10 7 CPU sec/year  3 CPU’s Waveform fitting ~ 6 x 10 8 CPU sec/year  60 CPU’s Waveform fitting ~ 6 x 10 8 CPU sec/year  60 CPU’s (il fondo DOVREBBE dominare…!) data pre-filtering !!! data pre-filtering !!!

40 6 Febbraio Possible strategy for data reduction and analysis Two steps: 1) perform a fast reconstruction for selecting 1) perform a fast reconstruction for selecting most interesting events; most interesting events; 2) perform a more refined reconstruction 2) perform a more refined reconstruction (including waveform fitting etc.) on the (including waveform fitting etc.) on the selected sample. selected sample. Assumptions: a rough “ADC & TDC like” information must be provided by on-line algorithms. must be provided by on-line algorithms.

41 6 Febbraio Data reduction 6 x 10 7 events/year 3 x 10 7 events/year 6 x 10 6 events/year 6 x 10 6 events/year 5 x 10 5 events/year 5 x 10 5 events/year  E  > 47.5 MeV (2 FWHM from signal)  E e+ > 50 MeV (4 FWHM from signal)  e  < 80 mrad (4 FWHM from signal) Waveform fitting: 5 x 10 5 events x 10 sec CPU/event = 5 x 10 6 sec CPU (~ 2 months on a single computer). = 5 x 10 6 sec CPU (~ 2 months on a single computer). Timing information not used; if a fast reliable reconstruction can be done, a further relevant reduction (~ 10) is possible.

42 6 Febbraio MEG needs: 2. CPU time needed for MC generation Generation of samples: (2 x 10 7 (correlated) + 2 x 10 6 (uncorrelated)) (2 x 10 7 (correlated) + 2 x 10 6 (uncorrelated)) events/yr x 16 CPU sec/event = events/yr x 16 CPU sec/event = 4 x 10 8 CPUs/yr ~ 12  15 CPU’s 4 x 10 8 CPUs/yr ~ 12  15 CPU’sBartender: 1  2 CPU sec/event x 10 8 events/yr = 1  2 x 10 8 CPU sec/yr ~ 5 CPU’s 1  2 x 10 8 CPU sec/yr ~ 5 CPU’s

43 6 Febbraio Summary: 1. data storage resources and needs Assuming that half of the data collected in one year must reside on disks (for monitoring, calibrations, faster analysis etc.), MEG needs ~ 5 Tbytes/year of disk space.

44 6 Febbraio Summary: 2. CPUs

45 6 Febbraio Summary on data access resources and needs

46 6 Febbraio Conclusione  Inizio con 30 CPU al PSI ed eventuale aumento con il tempo.  Richiesta di utilizzo diretto (log-in) di 20 CPU del CNAF con 20 Tbyte di spazio disco per un’analisi italiana su campioni ridotti di dati.


Scaricare ppt "6 Febbraio 20061 Stato (di parte) della costruzione e del software di MEG 1. LXe cal. (PMT +criostato) 2. Elettronica di read-out 3. Acceleratore 4. MC."

Presentazioni simili


Annunci Google