La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

0 Nel 1997 il NIST emise una richiesta di proposte per un nuovo algoritmo detto AES, Advanced Encryption Standard, caratterizzato da una sicurezza almeno.

Presentazioni simili


Presentazione sul tema: "0 Nel 1997 il NIST emise una richiesta di proposte per un nuovo algoritmo detto AES, Advanced Encryption Standard, caratterizzato da una sicurezza almeno."— Transcript della presentazione:

1

2 0 Nel 1997 il NIST emise una richiesta di proposte per un nuovo algoritmo detto AES, Advanced Encryption Standard, caratterizzato da una sicurezza almeno uguale a quella offerta da 3DES ma più efficiente rispetto ad esso. Il NIST impose che i vari candidati che intendevano partecipare alla selezione per diventare il nuovo algoritmo AES, realizzassero una cifratura simmetrica con blocchi di lunghezza pari a 128 bit e chiavi lunghe 128, 192 o 256 bit. I criteri su cui NIST basò la selezione tra i potenziali candidati appartenevano alle seguenti categorie: Sicurezza Costo Caratteristiche dellalgoritmo e dellimplementazione Lo Standard AES (cenni preliminari)

3 1 Advanced Encryption Standard (cenni preliminari) 5 finalisti su 16 candidati: MARS, RC6, Rijndael, Serpent, Twofish, il vincitore della gara internazionale è Rijndael (si pronuncia come rain doll) Il NIST ha completato il processo di valutazione e pubblicato lo standard finale nel E stato selezionato lalgoritmo Rijndael proposto da due crittografi belga, Dr. Joan Daemen e Dr. Vincent Rijmen. AES è divenuto uno standard pubblico Nel 2003 la NSA ha approvato AES a 128 bit per i documenti classificati dalle amministrazioni USA come SECRET, e AES a 192 o 256 bit per i documenti classificati TOP-SECRET

4 2 Advanced Encryption Standard Valutazione di Rijndael eccellenti prestazioni su tutte le piattaforme (dai main frame alle smart card), buon margine di sicurezza a fronte di ogni attacco conosciuto, bassa richiesta di memoria, sia ROM che RAM, veloce procedura di key setup, buone caratteristiche per l'esecuzione parallela delle istruzioni, chiavi e blocchi di lunghezza variabile per multipli di 32 bit.

5 3 Rijndael Progettato in Belgio da V. Rijmen e J. Daemen Blocchi di dati da 128 bit e chiavi da 128/192/256 bit Cifrario non Feistel ma iterativo Elabora i dati come blocchi (State) di 4 words da 4 byte In ogni stadio opera sullintero blocco di dati Obiettivi del progetto Resistenza a tutti gli attacchi conosciuti Velocità e compattezza di codice sulle CPU più diffuse Semplicità concettuale

6 4 Rijndael (chiave 128 bit)

7 5 Parametri di AES

8 6 State array Lunità di elaborazione dellalgoritmo non è il bit ma il byte. Per un blocco di 128 bit la matrice in input è costituita da 16 byte, ovvero da una matrice quadrata 4 4. La chiave sarà rappresentata da matrici 4 4, 4 6 o 4 8 (vengono mantenute 4 righe per consentire operazioni con il blocco in input) corrispondenti a lunghezze della chiave di 128, 192 e 256 bit rispettivamente

9 7 State array Input bytes State arrayOutput bytes Le operazioni non vengono effettuate sullinput, ma su una matrice di appoggio detta State (o matrice di Stato), su cui linput viene copiato e da cui verrà estratto loutput. La copiatura viene realizzata per colonne, ovvero i primi 4 byte dellinput formano la prima word di State, i secondi 4 byte la seconda e così via. Al termine, dopo lultima fase il risultato viene copiato nellarray di Output.

10 8 Advanced Encryption Standard Rijndal è definito nel campo di Galois GF(2 8 ), rispetto al polinomio irriducibile P=x 8 +x 4 +x 3 +x+1 I n questo sistema matematico, un numero è rappresentato da una serie di coefficienti a questo polinomio di grado 8. Per esempio, il numero 23 in binario 10111, corrisponde al polinomio 1x 4 +0x 3 +1x 2 +1x+1= x 4 +x 2 +1x+1 Laggiunta dei coefficienti viene eseguita (mod 2), in modo che laddizione corrisponda alla sottrazione, che equivale allOR esclusivo: 0+0=0, 1+0=0, 1+1=0 La moltiplicazione è quella standard tra polinomi: (x 3 +1)*(x 4 +x)=(x 7 +x 4 +x 4 +x)

11 9 Advanced Encryption Standard Notazione word indica una singola colonna di un blocco (sia di quello in input che di quello della chiave); Nb indica il numero di word di un blocco in input; Nk indica il numero di word della chiave; Nr indica il numero di round in cui avverrà la codifica.

12 10 Advanced Encryption Standard Versione ufficiale dellAES Nb 4 Nk 4,6,8 a seconda del tipo di chiave usata. Nr 10 round per una chiave a 128 bit Nr 12 round per una chiave a 192 bit Nr 14 round per una chiave a 256 bit

13 11 Caratteristiche generali dellAES Funzioni principali: KeyExpansion e Chiper KeyExpansion è un generatore di chiavi. La chiave fornita come input viene espansa in un array di 44 words a 32 bit. Per ciscuna fase vengono utilizzate come chiavi quattro word distinte. Chiper è la funzione che codifica il messaggio, implementa gli Nr round, di cui N r - 1 sono identici, mentre uno è diverso dagli altri; gli N r -1 round identici codificano il messaggio attraverso lapplicazione di quattro funzioni in cascata il round rimanente è diverso dagli altri poiché sostituisce a MixColumns unaltra occorrenza di AddRoundKey, e necessita quindi di due chiavi; inoltre, le funzioni vengono applicate in ordine diverso

14 12 Caratteristiche generali dellAES

15 13 Funzioni implementate in ogni ciclo (round) Sostituzione dei ByteSostituzione dei Byte Computa una sostituzione di byte utilizzando una tavola di sostituzione nota come S-Box Scorrimento delle righeScorrimento delle righe Realizza uno spostamento ciclico delle righe dello State che contengono i byte dei dati di input Mescolamento delle colonneMescolamento delle colonne laritmetica su GF(2 8 ) mescolanza dei byte che utilizza laritmetica su GF(2 8 ) Aggiunta della sottochiaveAggiunta della sottochiave Operazione di XOR bit-a-bit del blocco corrente con la Chiave di Round.

16 14 Un round di Rijndael Substitute bytes (sostituzione) Shift rows (permutazione) Mix columns (sostituzione) INPUT: 128 bit in 4 blocchi da 32 Add Round Key (sostituzione) KiKi OUTPUT: 128 bit in 4 blocchi da 32 KEY: 128 bit da ripetere r volte (da 10 a 14)

17 15 Advanced Encryption Standard

18 16 Advanced Encryption Standard Utilizza una struttura di sostituzione simile a quella di DES, sostituendo ogni byte di un blocco di 128 bit secondo una tabella di sostituzione. E E invertibile e non lineare, caratteristica che costituisce un punto di forza dellAES. Si tratta di unoperazione di confusione diretta Sostituzione dei Byte (substitute bytes transformation) Scorrimento delle righe Mescolamento delle colonne Aggiunta della sottochiave

19 17 Advanced Encryption Standard

20 18 Costruzione S-box 1) Inizializzazione dellS-box con valori di byte ascendenti F F …………. F0 F1 F2 F3 F4.... FF 2) Processo di mappatura di ciascun byte dellS-box nel suo inverso moltiplicativo nel campo GF (2 8 ) 3) Si applica a ciascun bit di ogni byte la trasformazione affine su GF (2) ove c i è il bit i-esimo di un byte c = {63} in esadecimale oppure{ } in binario

21 19 Costruzione S-box L' elemento della S-Box prodotto dalla trasformazione : affine può essere espresso in forma matriciale come:

22 20 Costruzione S-box La figura seguente illustra l' effetto della trasformazione SubBytes () sull'array State

23 21 Costruzione S-box La S-Box usata nella trasformazione SubBytes () viene ora presentata in forma esadecimale: Ad esempio, se s1,1 = { 5 3 }, allora il valore della sostituzione dovrebbe essere determinato dall'intersezione della riga di indice ' 5 ' con la colonna di indice ' 3 '. Il risultato di tale sostituzione sarebbe dunque il valore s'1,1 = { e d }.

24 22 Costruzione S-box Esempio: supponiamo di avere il numero (53) 16 che in binario è rappresentato dal byte : (53) (83) e, poiché rappresentato come elemento del campo diventa: x 6 + x 4 + x +1. Linverso moltiplicativo (nel campo GF(2 8 ) ) è: x 7 + x 6 + x 3 + x. Quindi in notazione binaria abbiamo: (a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 )=( ).

25 23 Costruzione S-box Il risultato è quindi: (b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 ) = ( ) 2 In notazione esadecimale è ED Calcoliamo allora ………………… e così via

26 24 Advanced Encryption Standard E un passaggio di trasposizione. Per le dimensioni del blocco pari a 128 o 192 bit, la riga n viene fatta scorrere in modo circolare di n-1 byte; per i blocchi di 256 bit, la riga 2 viene fatta scorrere di 1 byte mentre le righe 3 e 4 sono scostate rispettivamente di 3 e 4 byte. Si tratta di unoperazione di confusione diretta. Sostituzione dei Byte Scorrimento delle righe ( Shift Rows transformation) Mescolamento delle colonne Aggiunta della sottochiave

27 25 Scorrimento delle righe Loperazione è modulo 4, quindi i byte che muovendosi a sinistra escono dalla matrice, rientrano da destra. Blocco di 128 bit

28 26 Questo passaggio implica lo scorrimento verso sinistra e lesecuzione di un OR esclusivo dei bit con se stessi. Queste operazioni consentono sia la confusione sia la diffusione. Sostituzione dei Byte Scorrimento delle righe Mescolamento delle colonne ( mix columns transformation) Aggiunta della sottochiave Advanced Encryption Standard

29 27 Mescolamento delle colonne La trasformazione MixColumns () opera sulle colonne dell'array State. Le colonne sono trattate come polinomi di 4 termini con coefficienti nel campo finito GF(2 8 ) e sono moltiplicate modulo x4+1 con un fissato polinomio. Ciò può essere scritto come una moltiplicazione matriciale.

30 28 Mescolamento delle colonne Come risultato di questa moltiplicazione, i 4 byte in una colonna sono sostituiti dai byte seguenti: s'0,c = ({02} · s0,c) ({03} · s1,c) s2,c s3,c s'1,c = s0,c ({02} · s1,c) ({03} · s2,c) s3,c s'2,c = s0,c s1,c ({02} · s2,c) ({03} · s3,c ) s'3,c = ({0b} · s0,c ) s1,c s2,c ({0e} · s3,c )

31 29 Mescolamento delle colonne La trasformazione MixColumns () è stata scelta secondo i seguenti criteri: 1. Invertibilità; 2. linearità in GF(28); 3. la velocità su microprocessori a 8-bit; 4. la simmetria; 5. la semplicità di descrizione. I criteri 2, 4 e 5 hanno condotto alla scelta del modulo della moltiplicazione polinomiale x 4 +1, i criteri 1, 3 impongono le condizioni sui coefficienti. Il criterio 3 impone che i coefficienti abbiano valori piccoli, in ordine di preferenza {00}, {01}, {02}, {03}.

32 30 Advanced Encryption Standard Una porzione della chiave per questo ciclo viene sottoposta a OR esclusivo con il risultato del ciclo. Questa operazione fornisce la confusione e incorpora la chiave Sostituzione dei Byte Scorrimento delle righe Mescolamento delle colonne (mix columns transformation) Aggiunta della sottochiave (AddRoundKey Transformation)

33 31 Aggiunta della sottochiave Loperazione AddRoundKey consiste in un bitwise XOR tra i 128 bits dello State e i 128 bits della round key AES usa una chiave di 128 bit (4 words da 4 bytes) Nel processo di encryption si usano 11 round key di 4 words In totale si usano 44 words da 4 bytes = 176 bytes = 1408 bits 1408 bits ottenuti tramite il processo di key expansion

34 32 Aggiunta della sottochiave Nota Nota Si ha sia confusione che diffusione. I bit della chiave siSi ha sia confusione che diffusione. I bit della chiave si combinano spesso con i bit del risultato intermedio determinando la diffusione dei bit della chiave nel determinando la diffusione dei bit della chiave nel risultato finale. I 4 passaggi sono rapidiI 4 passaggi sono rapidi

35 33 Aggiunta della sottochiave

36 34 AES Key expansion Consideriamo la versione di AES a 10 round, ossia la versione che usa una chiave a 128 bit. Ci servono un numero di chiavi adatto a 11 round, ognuna delle quali è costituita da 16 byte. Lalgoritmo che genera le chiavi è word– oriented, dove una parola (word appunto) è formata da 4 byte o, equivalentemente, da 32 bit; quindi, ogni chiave di un round è costituita da 4 parole. Linsieme delle chiavi di tutti i round è detto chiave espansa (expanden key), è formato da 44 parole ed è denotato con w[0],...,w[43], dove ogni w[i] è una parola. La chiave espansa è costruita usando la funzione KeyExpansion

37 35 AES Key expansion

38 36 AES Key expansion Linput di questo algoritmo è la chiave di 128 bit, key, che è utilizzata come un vettore di byte, key[0],...key[15] ; loutput è il vettore delle parole w. La funzione KeyExpansion incorpora altre due funzioni, che sono chiamate RotWord e SubWord; la funzione RotWord esegue uno spostamento (shift) ciclico a sinistra dei quattro byte B0, B1, B2, B3, cioè: mentre la funzione SubWord (B 0, B 1, B 2, B 3 ) applica la S-Box ad ognuno dei quattro byte B0, B1, B2, B3, cioè: Il risultato dei passi 1 e 2 è sottoposto a uno xor con una costante di fase

39 37 AES Key expansion

40 38 AES Key expansion Nota Le prime Nk word della chiave espansa sono ottenute direttamente dalla chiave di cifratura, mentre ogni word successiva, w[ i ], dalla chiave di cifratura, mentre ogni word successiva, w[ i ], è uguale allo XOR della word precedente, w[ i-1 ], con la word di Nk posizioni più indietro. di Nk posizioni più indietro.

41 39 AES in dettaglio


Scaricare ppt "0 Nel 1997 il NIST emise una richiesta di proposte per un nuovo algoritmo detto AES, Advanced Encryption Standard, caratterizzato da una sicurezza almeno."

Presentazioni simili


Annunci Google