La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

IO: II Lezione (P. Bertoletti)1 Lezione II: Richiami di Microeconomia La Curva di Domanda Immaginiamo la nostra (massima) Disponi- bilità a Spendere per.

Presentazioni simili


Presentazione sul tema: "IO: II Lezione (P. Bertoletti)1 Lezione II: Richiami di Microeconomia La Curva di Domanda Immaginiamo la nostra (massima) Disponi- bilità a Spendere per."— Transcript della presentazione:

1 IO: II Lezione (P. Bertoletti)1 Lezione II: Richiami di Microeconomia La Curva di Domanda Immaginiamo la nostra (massima) Disponi- bilità a Spendere per un certo bene, per e- sempio un trancio di pizza nella pausa tra le lezioni. Una possibilità ragionevole è 3 per il pri- mo trancio, 1,5 per il secondo e 20 cente- simi per il terzo.

2 IO: II Lezione (P. Bertoletti)2 La Domanda di pizza p 3 1,5 0,2 q 123 1

3 IO: II Lezione (P. Bertoletti)3 Come usare la funzione di domanda Il grafico precedente consente di identifi- care la quantità acquistata a partire dal prez- zo del bene (ex: 2 tranci se il prezzo è 1). Ma identifica anche, a partire dalla quantità acquistata, la disponibilità marginale a spendere di chi esprime la domanda (ex: 0,2 per il terzo trancio).

4 IO: II Lezione (P. Bertoletti)4 Formalmente: Il primo utilizzo corrisponde a leggere la curva di domanda come: q = D(p) Il secondo utilizza la sua inversa (nota come curva di domanda inversa): p = P(q) (= D -1 (q))

5 IO: II Lezione (P. Bertoletti)5 Surplus (netto) del consumatore - CS Comè noto, lutilizzo della disponibilità (marginale) a spendere conduce direttamen- te ad una misura di benessere del consuma- tore, determinata dalla somma, per ciascu- na delle unità acquistate, delle differenze tra disponibilità a spendere e prezzo effet- tivamente pagato (ex: 2,5 nel caso di 2 uni- tà pagate 1).

6 IO: II Lezione (P. Bertoletti)6 Surplus lordo del consumatore Il surplus lordo è poi semplicemente la somma delle disponibilità (marginali) a pagare per tutte le unità acquistate (ex: 4,5 nel caso di 2 unità). Da notare che il surplus è dunque rappresentato dallarea che giace sotto la curva di domanda (e sopra la linea del prezzo nel caso del surplus netto).

7 IO: II Lezione (P. Bertoletti)7 Comè noto: 1.Le curve di domanda di mercato (o aggregate) si ottengono per somma orizzontale di quelle individuali. 2.Sono usualmente rappresentate da curve lisce decrescenti (spesso lineari per semplicità). 3.I surplus sono dunque definiti da aree (ovvero opportuni integrali della funzione di domanda).

8 IO: II Lezione (P. Bertoletti)8 Ex: la domanda lineare D(p) = (a - p)/b P(q) = a – bq tg = b CS(q) = (a - p)q/2 p a P(q)P(q) 0 q qa/ba/b p D(p)D(p) CS(q)

9 IO: II Lezione (P. Bertoletti)9 Lelasticità della domanda Lelasticità della domanda è definita da: (p) = - (dq/dp)p/q = - D(p)p/ D(p) - ( q/q)/( p/p) Perciò può essere interpretata come valore della variazione percentuale (in valore assoluto) della quantità che corrispondenza ad una variazione percentuale unitaria del prezzo.

10 IO: II Lezione (P. Bertoletti)10 Si noti che: In generale non ha un valore costante ma esso dipende dal punto della funzione di domanda in cui si computa. Usando il fatto che D(p) = 1/P(D(p)) per il teore- ma della funzione inversa, lelasticità può essere valutata equivalentemente partendo dal valore della quantità come segue: (q) = - P(q)/(P(q)q)

11 IO: II Lezione (P. Bertoletti)11 Si noti che: Dallultimo risultato segue che cè una relazione precisa tra il valore di e landamento della spesa (dei consumatori), R(q) = P(q)q (ovvero pD(p)), noto come ricavo totale (delle imprese): d(P(q)q)/dq = R(q) = P(q)q + P(q) = P(q)(1 – 1/ (q)) Perciò la spesa sarà crescente rispetto alla quantità (e quindi decrescente rispetto al prezzo), ovvero il ricavo marginale R(q) sarà positivo, se e solo se lelasticità è superiore a 1.

12 IO: II Lezione (P. Bertoletti)12 Ex: elasticità e domanda lineare p (p) = p/(a –p) R(q) = a – 2bq a > 1 0 q a/ba/b a/2 < 1 a/(2b) = 1 = 0 R(q)R(q)

13 IO: II Lezione (P. Bertoletti)13 La Funzione di Costo La funzione di costo sintetizza come gli input sono trasformati in output dallimpresa: C(q) = costo totale degli input necessari a produrre il livello q di prodotto

14 IO: II Lezione (P. Bertoletti)14 Ci sono poi diverse nozioni di costo rilevanti: C. fisso: CF C. variabile: CV(q) (C(q) = CF + CV(q)), con CV(0) = 0. C. unitario (o medio): CU(q) = C(q)/q (C. unitario variabile: CUV(q) = CV(q)/q) C. marginale: C(q) = CV(q) C(q + 1) - C(q) = C. incrementale

15 IO: II Lezione (P. Bertoletti)15 Ex 1: la fabbrica di magliette Il leasing di una macchina costa 20 alla settima- na. La macchina, utilizzata da un operaio, produce una maglietta allora. Il costo della manodopera è 1 lora nei giorni fe- riali (prime 40 ore settimanali, 8 ore giornaliere), poi 2 lora al sabato (massimo 8 ore) e 3 lora alla domenica (massimo 8 ore).

16 IO: II Lezione (P. Bertoletti)16 Landamento dei costi: 3 0 q 1,5 1 C(q)C(q) 40 CU(q) CU(56) = 25/14, CUV(q) CUV(56) = 10/7

17 IO: II Lezione (P. Bertoletti)17 Nellesempio della fabbrica delle magliette: Lattività non è economicamente redditizia se il prezzo delle magliette non è almeno 1,5, iden- tificato dal punto di minimo della curva CU (se il macchinario in leasing non può essere immedia- tamente restituito (cioè il suo costo è irrecupera- bile) il prezzo minimo al quale conviene produrre scende a 1, punto di minimo di CUV). Superata tale soglia la quantità che conviene pro- durre è identificata dalla condizione prezzo delle magliette = C.

18 IO: II Lezione (P. Bertoletti)18 Un caso più generale: 0 q C(q)C(q) q CU(q) p O(p)O(p) C(0)

19 IO: II Lezione (P. Bertoletti)19 Nel grafico precedente: p e q sono rispettivamente il prezzo minimo e la quantità minima producibili in maniera econo- micamente redditizia. O(p), cosiddetta funzione di offerta, è il tratto della curva di costo marginale al di sopra del prezzo minimo, e indica la quantità (positiva) offerta dallimpresa in funzione del prezzo (per semplicità abbiamo supposto che nessun costo sia irrecuperabile).

20 IO: II Lezione (P. Bertoletti)20 In generale (per unimpresa price-taker): Il costo marginale determina quanto è econo- micamente conveniente produrre (unimpresa può ragionare al margine per vedere che per la quantità ottima q* deve essere p = C(q*)). Il livello del costo unitario (relativo ai costi recuperabili) determina se è conveniente pro- durre (se p < CU allora deve essere R = pq < qCU = C, ovvero profitto = R - C < 0).

21 IO: II Lezione (P. Bertoletti)21 Ex 2: la scelta degli impianti 0 q CU 1 = C 1 q CU 2 C2C2 qq

22 IO: II Lezione (P. Bertoletti)22 La scelta degli impianti ….. Supponiamo che si debba ripartire la quantità di produzione q* tra gli impianti 1 e 2, con q* > q. Qual è il riparto ottimale (ovvero che minimizza i costi)? Quello che eguaglia i costi marginali, ovvero: q 2 = q e q 1 = q* - q!

23 IO: II Lezione (P. Bertoletti)23 Ex 3: penne rosse e penne blu Supponiamo che si possano produrre 8000 penne al giorno con un CF = 1000 e CV(q) = 0,15q. Le prime 5000 penne rosse si possono vendere a 30 centesimi luna, e le successive a 20 cen- tesimi. Le penne blu si vendono a 25 centesimi luna.

24 IO: II Lezione (P. Bertoletti)24 Quale riparto tra penne rosse e blu? E ovvio che è il caso di produrre 5000 R e 3000 B, ottenendo un profitto di 50 : = (0,15 · 5000) + (0,10 · 3000) = – 1000 = 50 Ma conviene vendere le B? Computando una quota di costo fisso pari a 3/8 · 1000 = 375 si ottiene: B = (0,10 · 3000) = - 75 < 0 !

25 IO: II Lezione (P. Bertoletti)25 Si direbbe che sia il caso di vendere solo le R … Ma se si facesse così: R = (0,15 · 5000) + (0,05 · 3000) = – 1000 = -100! Non ha senso economico imputare i costi fissi comuni nel decidere cosa produrre!!!!

26 IO: II Lezione (P. Bertoletti)26 Ancora sulle tipologie di costo rilevanti: I costi economicamente rilevanti sono quelli co- siddetti opportunità (o ombra), misurati dai bene- fici cui si rinuncia non usando nel miglior modo alternativo le risorse (ex: risorse imprenditoriali e profitti normali). Perciò i costi irrecuperabili (o affondati (sunk)), ovvero quelli sostenuti per attività senza usi alter- nativi (cioè altamente specifiche), sono irrilevanti nel prendere decisioni una volta che siano già stati effettuati.

27 IO: II Lezione (P. Bertoletti)27 Economie di scala CU q qq Economie di scala Diseconomie di scala Rendimenti costanti di scala q è la cosiddetta Scala Minima Efficiente dellimpresa Se Q è la dimensione del mercato, allora SMS/Q è un indicatore della sua concentrazione attesa

28 IO: II Lezione (P. Bertoletti)28 Economie di scopo (o varietà) Si dice che vi sono per unimpresa Economie di scopo nella produzione di due output (le cui quantità sono indicate da q 1 e q 2 ) se: C(q 1,q 2 ) < C(q 1,0) + C(0,q 2 ) (ovvero se la funzione di costo è sub- additiva). Naturalmente in presenza di economie di scopo ci si aspetta una produzione congiunta.

29 IO: II Lezione (P. Bertoletti)29 La massimizzazione del profitto Assumendo che le imprese scelgano i prezzi per massimizzare i profitti (ipotesi che sarà discussa nel Cap. 3), in presenza di una curva di domanda decrescente è sempre possibile discutere come se scegliessero le quantità, operando sulla curva di domanda inversa P(q) (per ogni quantità cè un solo prezzo ottimo).

30 IO: II Lezione (P. Bertoletti)30 I profitti si possono sempre scrivere come Ricavi – Costi, ovvero: (q) = R(q) - C(q) dove: R(q) = P(q)q. La condizione del primo ordine (FOC) richiede dunque che il profitto marginale(q) sia nullo, e cioè che il ricavo marginale sia uguale al costo marginale. La condizione del secondo ordine (SOC) richiede che il profitto marginale sia decre- scente.

31 IO: II Lezione (P. Bertoletti)31 Graficamente, la situazione è del tipo: q q* (q*) = 0 R(q*) = C(q*) FOC (q*) 0 R(q*) C(q*) SOC

32 IO: II Lezione (P. Bertoletti)32 Nel caso di unimpresa competitiva,, perciò R p e la precedente condizione im- plica p = C (non cè potere di mercato) CU(q*) q p q* p O(p)O(p) CU(q) C(q)C(q) p = C(q*), q* = O(p), * = (p - CU(q*)) q*

33 IO: II Lezione (P. Bertoletti)33 Si ricordi che, come nel caso della domanda: La curva di offerta di mercato si ottiene poi per aggregazione orizzontale delle curve di offerta delle singole imprese, e dunque in ciascun punto lOfferta riflette il costo marginale delle imprese attive a quel prezzo. Nei grafici seguenti, dunque, il costo marginale potrebbe essere sostituito dalle funzione di offerta aggregata rilevante (nel caso di una molteplicità di imprese).

34 IO: II Lezione (P. Bertoletti)34 Surplus del produttore - PS Il surplus del produttore è convenientemente misurato dal profitto variabile (al lordo dei costi fissi): v (q) = (q) + CF = R(q) - CV(q) Si tratta di una misura analoga al CS, ricavabile dalla funzione di offerta e definibile come somma, per ciascuna delle unità vendute, delle differen- ze tra prezzo ricevuto e Disponibilità (marginale) a Vendere (questultima misurata dal costo mar- ginale).

35 IO: II Lezione (P. Bertoletti)35 Il PS è dunque larea che giace sotto la linea del prez- zo e sopra la curva del costo marginale/funzione di offerta: p p q q v CV(q) C(q) =D. a V.

36 IO: II Lezione (P. Bertoletti)36 Formalmente: Come illustrato nel grafico precedente, il costo variabile è dato dallarea sottostante il costo marginale: Perciò: v = pq - CV(q) = PS(q)

37 IO: II Lezione (P. Bertoletti)37 Il Benessere collettivo o Surplus Totale - W Sommando il CS e il PS si ottiene il Surplus To- tale (o benessere collettivo, o social welfare): W(q) = CS(q) + PS(q) Si noti che si può definirlo come la somma, per ciascuna unità scambiata, delle differenze tra di- sponibilità a spendere e disponibilità a vendere (ovvero, si tratta dellarea compresa tra la curva di domanda e quella di offerta). E anche pari al surplus lordo del consumatore meno il costo variabile.

38 IO: II Lezione (P. Bertoletti)38 Graficamente, supponendo che il prezzo P(q) sia superiore al costo marginale C(q) : p q q W(q) CV(q) C(q) P(q) EL(q) qeqe W(q) = CS(q) + PS(q)

39 IO: II Lezione (P. Bertoletti)39 Il welfare è una misura (monetaria) aggregata del valore di un mercato per i soggetti coin- volti. Si noti che non dipende direttamente dal prezzo di mercato, che svolge però il ruolo cruciale di determinarlo indirettamente attraverso la determinazione della quantità scambiata, e di dividerlo tra la componente che spetta ai consumatori e quella che va ai produttori.

40 IO: II Lezione (P. Bertoletti)40 Non è difficile capire che: Il massimo benessere collettivo si ottiene se la quantità prodotta eguaglia prezzo e costo marginale. Poiché: deve essere

41 IO: II Lezione (P. Bertoletti)41 Dunque: La precedente FOC implica che il be- neficio sociale marginale W(q) = (P(q) – C(q)) di produrre ununità in più sia nullo per la quantità che massimizza il welfa- re, indicata graficamente con q e.

42 IO: II Lezione (P. Bertoletti)42 Efficienza I La quantità scambiata q e corrisponde ad una situazione di efficienza paretiana (se il prezzo fosse diverso dal costo marginale sarebbe teoricamente possibile per un con- sumatore e unimpresa scambiare ulterior- mente con reciproco vantaggio). Larea di Perdita di efficienza EL (dovuta al potere di mercato) è dunque una misura ra- gionevole di inefficienza (cosiddetta allo- cativa).

43 IO: II Lezione (P. Bertoletti)43 Inefficienza produttiva Per efficienza produttiva sintende che la quantità prodotta è realizzata al costo mi- nimo. Deviazioni sono possibili per a)Errori nel mix produttivo (inefficienza tecni- ca) b)Sprechi nelluso dei fattori (cosiddetta ineffi- cienza di tipo X)

44 IO: II Lezione (P. Bertoletti)44 In generale possiamo rappresentare linefficienza produttiva come un aumento dei costi marginali: p C I C C q qIqI P(q) q Dove larea C misura il maggior costo (variabile) di produrre q I

45 IO: II Lezione (P. Bertoletti)45 Efficienza II Si noti che linefficienza produttiva impli- ca quella allocativa: anche se limpresa fosse competitiva pro- durrebbe troppo poco (q I invece che q).

46 IO: II Lezione (P. Bertoletti)46 Efficienza dinamica Lidea di efficienza dinamica può poi essere catturata: a) dalla capacità di ridurre il costo marginale nel corso del tempo (attraverso lintroduzione di opportune innovazioni di processo) b) dalla capacità di introdurre adeguatamente nuovi prodotti (innovazioni di prodotto)

47 IO: II Lezione (P. Bertoletti)47 Efficienza III Anche linefficienza di tipo dinamico impli- ca quella allocativa, in senso stretto. Tuttavia essa è più difficile da considerare di quella di tipo statico (che prende per date le tecnologie a disposizione), e vi potreb- bero essere dei trade-off tra le due (come suggerito dal citato punto di vista schumpeteriano).


Scaricare ppt "IO: II Lezione (P. Bertoletti)1 Lezione II: Richiami di Microeconomia La Curva di Domanda Immaginiamo la nostra (massima) Disponi- bilità a Spendere per."

Presentazioni simili


Annunci Google