La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Scopo della lezione Regressione lineare multipla –Cosè –Scopi dellanalisi della regressione Quando si applica? –condizioni di applicabilità – utilità Coefficienti.

Presentazioni simili


Presentazione sul tema: "Scopo della lezione Regressione lineare multipla –Cosè –Scopi dellanalisi della regressione Quando si applica? –condizioni di applicabilità – utilità Coefficienti."— Transcript della presentazione:

1 Scopo della lezione Regressione lineare multipla –Cosè –Scopi dellanalisi della regressione Quando si applica? –condizioni di applicabilità – utilità Coefficienti della regressione: quali sono gli indicatori utili? Interpretazione dei risultati dellanalisi della regressione

2 Cosa è lanalisi della regressione multipla? Tecnica che consente di analizzare il contributo di più variabili (predittori) su una variabile dipendente (criterio) ovvero Regressione multipla Regressione semplice X1X1 X2X2 XkXk …. Y XY

3 Scopi dellanalisi della regressione Predittivo: sulla base delle correlazioni tra i predittori e tra i predittori e il criterio si cerca di prevedere la risposta dei soggetti alla variabile criterio Causale: individuazione delle variabili che spiegano la risposta dei soggetti alla variabile criterio Come nella ANOVA lo scopo dipende dalla pianificazione sperimentale: – Variabili differenziali e variabili indipendenti

4 Analisi della regressione La regressione scompone la variabilità totale in variabilità spiegata dalla regressione e variabilità residua. La regressione generalmente non opera sui gruppi ma su variabili continue

5 Anova e Regressione Scopo predittivo: le persone che vivono in città sono più stressate delle persone che vivono in campagna. G1 (cittadini) O1 (stress) G2 (contadini) O2 (stress) H0: 1 = 2 ; H1 : 1 > 2 Regressione: Lontananza dal centro urbano (in Km) Stress H0: = 0 ; H1 : < 0 N.B. Nella regressione può essere utilizzato lo stesso disegno della ANOVA, trattando le variabili qualitative come variabili dummy. Anche in questo caso le ipotesi saranno formulate relativamente alla relazione

6 Anova e Regressione Scopo causale: le persone che vivono in città sono più stressate delle persone che vivono in campagna. Anova: G (cont.) O1 (stress) X(avvicinamento alla città per 6 m.) O2 (stress) H0: 1 = 2 ; H1 : 1 < 2 Ovvero H0: = 0 ; H1 : > 0

7 Passi fondamentali dellanalisi della regressione Selezione delle variabili Individuazione del modello di analisi della regressione Stima dei parametri Interpretazione dei risultati

8 Selezione delle variabili Decisione relativa al tipo di variabili –Assunzioni di normalità della distribuzione delle Y per ogni X –Assunzione di omeoschedasticità dei residui –Assunzione di assenza di multicollinearità nella popolazione: le variabili predittori non devono essere correlate tra loro

9 La regressione multipla E la combinazione lineare dei predittori atta a massimizzare la correlazione con la variabile dipendente (criterio) La combinazione si ottiene mediante il metodo dei minimi quadrati, che consente di minimizzare la somma dei quadrati delle differenze tra Y e Y ovvero massimizzare la loro correlazione. I parametri stimati tramite questo metodo individuano un piano o un iperpiano a k - 1 dimensioni

10 La retta di regressione Y X Y = a +b X a = altezza del punto di incontro del piano con lasse delle Y b = funzione dellangolo della inclinazione del piano con la variabile X a Y1Y1 Y1Y1 Y2Y2 Y3Y3 Y4Y4 Y4Y4 Y3Y3 Y2Y2 (Y i -Y i ) 2 = minima

11 Il piano di regressione Y X2 X1 Y = a +b 1 X 1 +b 2 X 2 a = altezza del punto di incontro del piano con lasse delle Y b 1 = funzione dellangolo della inclinazione del piano con la variabile X1 b 2 = funzione dellangolo della inclinazione del piano con la variabile X2 (Y i -Y i ) 2 = minima Y1Y1 Y1Y1 Y2Y2 Y3Y3 Y3Y3 Y2Y2

12 I coefficienti di regressione Equazione di regressione multipla Y = a + b 1 X 1 + b 2 X 2 + ….. + b k X k a = intercetta o termine costante b i = coefficienti di regressione parziale tra le variabili prese a coppie, è il rapporto tra la covarianza (tra Y e X i ) e la varianza della variabile X i. E dunque un indice di dipendenza di Y da X i. Differentemente dalla regressione semplice sono direzionali. X i = variabili predittori

13 I coefficienti b parziali Possono essere considerati coefficienti di correlazione parziale. Rappresentano linclinazione delliperpiano di regressione nella dimensione della corrispondente variabile indipendente, mantenendo costanti tutte le altre. b ij.k = b ij - (b ik ) (b kj ) / 1- b jk b kj Rappresenta il mutamento ipotetico che si verificherebbe nella variabile Y se una delle variabili indipendenti fosse cambiata di una unità e le altre variabili indipendenti restassero costanti

14 Scomposizione della devianza devianza totale n-1 Devianza dovuta alla regressione Devianza residua k n-k-1 (Y- Y medio ) 2 (Y- Y) 2 Si può controllare probabilisticamente tramite il test F la significatività della relazione. Lindicatore che si utilizza per misurare e quantificare la relazione è il coefficiente di correlazione multipla al quadrato (R 2 ), ovvero il coefficiente di determinazione. R 2 = SQ spiegata / SQ totale

15 Il coefficiente di correlazione multipla E il rapporto tra la devianza dovuta alla regressione e la devianza totale, ovvero è la proporzione di variabilità totale spiegata dallinsieme dei predittori. Rappresenta la correlazione tra due distribuzioni, quella della variabile criterio Y e quella della variabile predetta Y. E sempre superiore a quello tra le singole variabili Aumenta allaumentare della correlazione tra le singole variabili indipendenti e la dipendente Aumenta al diminuire della correlazione tra le variabili indipendenti Y X X

16 Coefficienti di correlazione Coefficiente di correlazione parziale: indica la relazione tra due variabili avendo eliminato leffetto delle altre. Non è unico, dipende da quali variabili vogliamo parzializzare. Correlazione parziale tra X1 e Y Y X1 X2

17 Altri coefficienti di correlazione Coefficiente di correlazione semiparziale: indica la relazione tra una variabile predittore e il criterio avendo eliminato leffetto delle altre sul predittore, ma non elimina la relazione che le altre variabili predittori hanno con il criterio. Y X1 X2

18 Scomposizione della devianza Devianza totale Devianza dovuta alla regressione Devianza residua Devianza X 1 Devianza X 2 Devianza X k Ogni variabile X ha il suo coefficiente, che si distribuisce come una t di student con n - k - 1 gdl

19 Procedure per selezionare i predittori Forward Calcola la correlazione tra ciascun predittore e il criterio: quello con la più alta correlazione entra per primo nellanalisi. I predittori successivi vengono introdotti nellanalisi in base al quadrato della correlazione semiparziale con il criterio, ovvero sono i predittori che incrementano R 2 La procedura termina quando un predittore non fornisce un incremento significativo N.B. una variabile già entrata nellequazione non viene più rimossa anche se il suo contributo diminuisce per effetto dellentrata di un altro predittore

20 Procedure per selezionare i predittori Backward Procede per eliminazione: calcola il coefficiente di correlazione multipla al quadrato considerando tutte la variabili predittore. Elimina una variabile alla volta tenendo presente la conseguente modificazione di R 2.Se la modificazione è irrilevante il predittore viene eliminato definitivamente N.B. Il contributo di ogni predittore è valutato alla luce degli altri.

21 Procedure per selezionare i predittori Stepwise Variazione della procedure forward: il contributo di ciascun predittore viene valutato nuovamente ad ogni passo, eliminando quelli che comportano una riduzione dell R 2. N.B. Il contributo di ogni predittore è valutato alla luce degli altri.

22 Applicazione della analisi della regressione

23 Estrazione dei predittori: quali predittori selezionare? Metodo della regressione stepwise Disturbo ossessivo-compulsivo Depressione Responsabilità Severità Controllo ? ? ?

24 Estrazione dei predittori: quali predittori estrarre? Metodo stepwise Step1. Variabili entrate al primo passo R multiplo0.23 R Adjusted R Standard Error15.01 F = 3.93p= 0.02 Variabili nellequazione VariabiliBSE BetaBetatp Controllo

25 Estrazione dei predittori: quali predittori estrarre? Metodo stepwise Step2 Variabili entrate R multiplo0.49 R Adjusted R Standard Error 13.7 F = 4.81p= Variabili nellequazione Variabili B SE BetaBetatp Controllo Responsabilità

26 Estrazione dei predittori: quali predittori estrarre? Metodo della regressione stepwise: risultati Disturbo ossessivo-compulsivo Depressione Responsabilità Severità Controllo =0.13 =0.39

27 Estrazione dei predittori: quali predittori estrarre? Metodo della regressione gerarchica Controllo Severità Responsabilità Depressione Disturbo ossessivo-compulsivo

28 Estrazione dei predittori: quali predittori estrarre? Metodo della regressione gerarchicaPredittori Step 1 Metodo enter: forzo le variabili ad entrare nella regressione Controllo Severità Depressione Step 2 Metodo enter: ResponsabilitàCriterio Disturbo ossessivo-compulsivo

29 Predittori: criteri generali Metodo enter: regressione gerarchica Step1 R multiplo0.58 R Adjusted R Analisi della varianzaGDLDevianzaVarianza Regressione Residuo F = 5.20p= Variabili nellequazione VariabiliBSE BetaBetatp Controllo Severità Depressione

30 Predittori: criteri generali Metodo enter: regressione gerarchica Step2 R multiplo0.72 R Adjusted R Analisi della varianzaGDLDevianzaVarianza Regressione Residuo F = 6.10p= Variabili nellequazione Variabili B SE Beta Beta t p Controllo Severità Depressione Responsabilità

31 Estrazione dei predittori: quali predittori estrarre? Metodo della regressione gerarchica: risultati Controllo Severità Responsabilità Depressione Disturbo ossessivo-compulsivo

32 Riepilogando La regressione multipla è una tecnica di analisi multipla che predice i punteggi di una variabile criterio a partire da K variabili predittori Il coefficiente R 2 indica la quantità di varianza spiegata o predetta dalla regressione Tramite il test F possiamo sottoporre a verifica lipotesi di regressione Tramite il test t possiamo sottoporre a verifica lipotesi di previsione di un predittore rispetto al criterio, allinterno della regressione multipla (H0: =0; H1: <>0) Più sarà dettagliato e pianificato il disegno di ricerca migliori saranno i modelli di analisi della regressione


Scaricare ppt "Scopo della lezione Regressione lineare multipla –Cosè –Scopi dellanalisi della regressione Quando si applica? –condizioni di applicabilità – utilità Coefficienti."

Presentazioni simili


Annunci Google