La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA Corso di Laurea Triennale in Infermieristica Anno III SECONDA LEZIONE.

Presentazioni simili


Presentazione sul tema: "STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA Corso di Laurea Triennale in Infermieristica Anno III SECONDA LEZIONE."— Transcript della presentazione:

1 STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA Corso di Laurea Triennale in Infermieristica Anno III SECONDA LEZIONE

2 INDICI DI POSIZIONE (variabili quantitative)

3 Gli indici di posizione denotano un valore intorno a cui colloca la distribuzione di frequenza Gli indici di posizione più comuni sono la MEDIANA e la MEDIA La mediana e la media sono espresse nella stessa unità di misura della variabile (se la variabile è espressa in Kg anche la mediana e la media sono espresse in Kg)

4 MEDIANA è il valore che occupa la posizione centrale nella sequenza delle osservazioni ordinate Es peso di n=5 neonati 2.6, 3.4, 2.8, 3.5, 4,2 si ordinano le osservazioni 2.6, 2.8, 3.4, 3.5, 4.2 il valore centrale è il terzo la mediana è 3.4 Kg

5 REGOLA GENERALE Se n è dispari la mediana è losservazione di posto (n+1)/2 nella sequenza delle osservazioni ordinate Es. se n=9 la mediana è lelemento di posto 10/2=5 se n=27 la mediana è lelemento di posto 28/2=14 se n=389 la mediana è lelemento di posto 390/2=195

6 Es peso di n=6 neonati 2.6, 3.4, 2.8, 3.5, 4.2, 3.2 si ordinano le osservazioni 2.6, 2.8, 3.2, 3.4, 3.5, 4.2 il valori centrali sono il terzo e il quarto la mediana è la semisomma (punto intermedio) tra i due ( )/2=6.6/2=3.3 Kg

7 REGOLA GENERALE Se n è pari la mediana è la semisomma tra losservazione di posto n/2 e quella di posto n/2+1 nella sequenza delle osservazioni ordinate Es. se n=10 la mediana è la semisomma tra gli elemento di posto 10/2=5 e 6 se n=28 la mediana è la semisomma tra gli elementi di posto 28/2=14 e 15 se n=390 la mediana è la semisomma tra gli elementi di posto 390/2=195 e 196

8 MEDIA La media e la somma delle osservazioni diviso il numero delle stesse

9 Es peso di n=5 neonati 2.6, 3.4, 2.8, 3.5, 4,2 ( )/5=16.5/5=3.3 la media è 3.3 Kg

10 PROPRIETA DELLA MEDIA La media è sempre compresa tra losservazione più piccola e quella più grande La somma degli scarti dalla media è nulla

11 Es peso di n=5 neonati 2.6, 3.4, 2.8, 3.5, 4,2 la media è 3.3 Kg che è un valore compreso tra 2.6 e 4.2 kg scarti dalla media -0.7, 0.1, -0.5, 0.2, 0.9 somma degli scarti = 0

12 La media è più sensibile della mediana alle osservazioni estreme Es peso di n=5 neonati 2.6, 3.4, 2.8, 3.5, 4,2media 3.3 kgmediana 3.4 kg 1.6, 3.4, 2.8, 3.5, 4,2media 3.1 kgmediana 3.4 kg 2.6, 3.4, 2.8, 3.5, 5.2media 3.5 kgmediana 3.4 kg

13 La media segue lunità di misura con cui sono espresse le osservazioni Es peso di n=5 neonati 2.6, 3.4, 2.8, 3.5, 4,2media 3.3 kg si passa da Kg a g 2600, 3400, 2800,3500, 4200 media 3300 g

14 INDICI DI VARIABILITA

15 media media stessa media ma diversa dispersione attorno alla media gli scarti dalla media tendono ad essere maggiori nel secondo caso

16 La media degli scarti dalla media potrebbe essere preso come indice di variabilità La somma degli scarti dalla media è sempre nulla, questo indice risulta sempre uguale a 0 Gli scarti positivi si compensano con quelli negativi Occorre fare perdere il segno agli scarti

17 VARIANZA Media dei quadrati degli scarti dalla media varianza corretta (più utilizzata)

18 Es peso di n=5 neonati 2.6, 3.4, 2.8, 3.5, 4,2 la media è 3.3 Kg scarti dalla media -0.7, 0.1, -0.5, 0.2, 0.9 quadrati degli scarti 0.49, 0.01, 0.25, 0.04, 0.81 ( )/5 = 1.6/5 = 0.32 kg 2 varianza ( )/4 = 1.6/4 = 0.4 kg2 varianza corretta

19 PROBLEMA La varianza si interpreta con difficoltà perché è espressa nel quadrato dellunità di misura delle osservazioni da m a m 2, da Kg a Kg 2, da cm 3 a cm 6, ecc Es peso di n=5 neonati 2.6, 3.4, 2.8, 3.5, 4,2 la media è 3.3 Kg che significa una varianza di 0.4 kg 2 ??????

20 SCARTO QUADRATICO MEDIO (DEVIAZIONE STANDARD) E la radice quadrata della varianza s x E espresso nella stessa unità di misura delle osservazioni Es peso di n=5 neonati 2.6, 3.4, 2.8, 3.5, 4,2 la media è 3.3 Kg, la varianza è 0.4 Kg2 lo scarto quadratico medio è 0.63 Kg mediamente le osservazioni si discostano dalla media di 0.63 Kg

21 OSSERVAZIONI Come la media lo scarto quadratico medio (sqm) segue lunità di misura delle osservazioni Es peso di n=5 neonati la media è 3.3 Kg e lo sqm è 0.63 Kg se si passa da Kg a g la media è 3300 g e lo sqm è 630 g Se tutte le osservazioni sono uguali (assenza di variabilità) la varianza (e dunque lo sqm) sono nulli

22 COEFFICIENTE DI VARIAZIONE (CV) E il rapporto tra lo sqm e la media delle osservazioni non dipende dallunità di misura in cui sono espresse le osservazioni

23 Es peso di n=5 neonati la media è 3.3 Kg e lo sqm è 0.63 Kg il cv è 0.63/3.3 = 0.19 se si passa da Kg a g la media è 3300 g e lo sqm è 630 g il cv è 630/3300 = 0.19 (invariato) in media le osservazioni si scostano dalla media del 19% della media stessa

24 Non dipendendo dallunità di misura il CV è idoneo a confrontare la variabilità tra variabili di diversa natura Es peso e altezze di n=5 neonati Pesi (Kg) 2.6, 3.4, 2.8, 3.5, 4,2 media 3.3 Kg,sqm 0.63 kg,CV=0.19 Altezze (cm)41, 48, 43, 46, 52 media 46 cm,sqm 4.3 cm,CV=0.093 Le altezze sono meno variabili dei pesi

25 INDICI DI FORMA

26 media media media gli scarti positivi tendono a essere più grandi coda rivolta verso destra asimmetria positiva gli scarti negativi tendono a essere più grandi coda rivolta verso sinistra asimmetria negativa simmetria degli scarti rispetto alla media

27 Gli scarti devono mantenere il segno INDICE DI ASIMMETRIA Media delle potenze terze degli scarti dalla media Altamente influenzato dallunità di misura non dipende dallunità di misura valori superiori a 2 o inferiori a -2 indicano forte asimmetria

28 Es peso di n=5 neonati 2.6, 3.4, 2.8, 3.5, 4,2 la media è 3.3 Kglo sqm è 0.63 Kg scarti dalla media -0.7, 0.1, -0.5, 0.2, 0.9 potenze terze degli scarti , 0.001, , 0.008, momento terzo 0.27/5 = Kg 3 indice di asimmetria a 3 = 0.054/(0.63) 3 = 2.16

29 DISTRIBUZIONI NORMALI (GAUSSIANE) Distribuzioni campanulari simmetriche attorno alla media, tali che media ± 2 sqm contiene il 95% delle osservazioni media ± 3 sqm contiene il 99% delle osservazioni sono rarissime le osservazioni che distano dalla media più di 3 volte lo sqm

30 Es Altezza italiani maschi media 175 cmsqm 10 cm 175 ± 2x10 = 155 – 195 cm circa il 95 % degli italiani maschi 175 ± 3x10 = 145 – 205 cm circa il 99 % degli italiani maschi un individuo che fosse più basso della media di una quantità pari a 5 volte lo sqm avrebbe altezza 175 – 5x10 = 125 cm !!!!!!! un individuo che fosse più alto della media di una quantità pari a 5 volte lo sqm avrebbe altezza x10 = 225 cm !!!!!!!


Scaricare ppt "STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA Corso di Laurea Triennale in Infermieristica Anno III SECONDA LEZIONE."

Presentazioni simili


Annunci Google