La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

1 MODELLI DI SERIE STORICHE Approccio Classico Modelli di composizione: - componenti trend ciclo stagionalità comp.accidentale - tipi di composizione :

Presentazioni simili


Presentazione sul tema: "1 MODELLI DI SERIE STORICHE Approccio Classico Modelli di composizione: - componenti trend ciclo stagionalità comp.accidentale - tipi di composizione :"— Transcript della presentazione:

1 1 MODELLI DI SERIE STORICHE Approccio Classico Modelli di composizione: - componenti trend ciclo stagionalità comp.accidentale - tipi di composizione : 1) additività 2) moltiplicatività 3) misto 1) ipotesi di indipendenza tra le componenti modello additivo 2) non indipendenza tra le componenti modello moltiplicativo

2 2 Il caso 2) si riduce al caso 1) considerando i log, cioè : 3)modello: pregi difetti -semplicità -pluralità di soluzioni -serie anche corte -assunzione modellistica prima approssimaz. troppo rigida -visione settorizzata

3 3 Modelli stocastici o di Box-Jenkins (approccio moderno post 1925) 1.Modello autoregressivo (AR) 2.Modello a media mobile (MA) 3.Modello misto (ARMA) 1. residuo o disturbo coefficienti AR(p) - modello autoregressivo di ordine p 2.Media mobile : è una media aritmetica che si sposta, ad ogni iterazione, dallinizio alla fine della successione di dati.

4 4 Esempio: MA a tre termini In generale termini dispari. MA centrata. Può essere: - semplice - ponderata

5 5 Modelli a MA: costanti Modello MA(q) di ordine q 3.Modelli misti Modello ARMA (pq) I modelli Box-Jenkins essendo di tipo stocastico stocastico generano un processo stocastico Analizzare una serie empirica con i modelli Box-Jenkins significa scegliere, tra i molti modelli possibili, quello più adatto e stimarne i parametri 2 fasi di analisi: _ identificazione _ stima

6 6 Operatori, funzioni generatrici, equazioni alle differenze finite Operatore allindietro (backward) B Data una sequenza loperatore B serve a trasformare un termine di tale sequenza in uno che lo precede di uno o più posti. Quindi : oppure Operatore in avanti (forward) F Stessa definizione, salvo che F trasforma in avanti, cioè oppure Ovviamente :

7 7 Operatore alle differenze finite. oppure Ma: cioè : Poi:

8 8 PROCESSO AUTOREGRESSIVO DI ORDINE p AR(p) (*) Somma ponderata di valori passati cui si aggiunge un disturbo calcolato sul valore attuale. Riscrivendo la (*) si ha: che diviene, con loperatore B: Ponendo la quantità in parentesi uguale a, nota anche come operatore AR(p), si ha:

9 9 Nella (*) può essere aggiunta una costante che misura il livello del processo che, se il processo è stazionario, è uguale alla sua media, quindi in generale AR(p) ha forma: Le condizioni di stazionarietà del processo si ottengono dalle radici della sua equazione caratteristica, cioè ponendo, quindi Si dimostra (Box & Jenkins) che la stazionarietà di AR(p) si ottiene quando le radici della equazione caratteristica sono in modulo > 1, o in altre parole sono esterne al cerchio di raggio unitario

10 10 Media. Se, nel caso del modello completo: Siccome Quindi Ovviamente nel modello ridotto in cui

11 11 Autocovarianza Ma per k > 0, quindi: k = 1,2,..p Varianza: analogamente si dimostra che Le di AR(p) sono in numero infinito; per i valori di j > p si può ricorrere alla forma: Che è nota come equazione di Yule-Walker

12 12 Tale relazione consente di : 1. conosciuto un certo AR(p), cioè una volta noti i, si possono calcolare le autocov. teoriche corrispondenti; 2. se non si conoscono i si possono stimare sostituendo ai valori teorici delle autocov. i corrispondenti valori campionari c i ottenuti dalla serie storica osservata. Autocorrelazione Dividendo si ha: k = 1,2,3,… In cui partendo da si ottengono in forma ricorsiva tutti i coefficienti di autocorrelazione teorica.

13 13 Ovviamente vale quanto detto in 1. e 2. Correlogramma Dalla si vede come il corr. di AR(p) è costituito da infiniti termini. Si dimostra che tali termini, a seconda dei valori dei parametri, tendono a zero monotonicamente oppure con oscillazioni. Casi particolari. AR(1) Il valore della serie al tempo t è pari ad una frazione del valore precedente aumentato (algebricamente) dellerrore.

14 14 Es: supponiamo. Allora graficamente: innovazione Stazionarietà Dal caso generale, siccome le radici dellequazione caratteristica, cioè sono esterne al cerchio unitario, allora : AR(1) è stazionario se e solo se

15 15 Media Se allora Varianza Dalle relazioni di e di AR(p) si ricava da cui risulta che, siccome allora, cioè, come rilevato per la condizione di stazionarietà. Autocovarianza Si dimostra (Nelson, Piccolo) che

16 16 che utilizzando la relazione per diviene: Autocorrelazione Correlogramma A seconda del segno di si ha: Autocorrelazione parziale Si dimostra (Kendall) che

17 17 Non stazionarietà La stazionarietà si ha per Se allora Random Walk (non stazion. omogenea (*)) Se allora il processo assume un andamento esplosivo tipo reazione nucleare. (*) considerando successivi intervalli temporali questi hanno dei componenti sostanzialmente uguali.

18 18 Random walk stazionarietà non omogenea Stazionario Esplosivo

19 19 Simula- zione AR(1) t a t z t t a t z t ,6 -0,4 1,3 -0,4 0,7 1,2 0,4 0,9 -0,1 -0,3 -0,1 0,2 -0,6 -0,4 -0,9 0,0 0,3 -1,6 -0,4 -0,8 -0,1 0,0 1,2 -0,1 0,4 -0,8 -0,2 0,8 0,5 -1,4 -0,96 0,92 -0,03 0,68 1,47 0,99 1,29 0,42 -0,13 -0,15 0,14 -0,54 -0,62 -0,64 -1,16 -0,46 0,11 -1,55 -1,02 -1,21 -0,58 -0,23 1,11 0,34 0,54 -0,58 -0,43 0, ,2 0,3 0,6 1,5 -0,9 -0,3 -0,4 -1,2 1,0 -1,3 0,4 0,0 0,5 2,1 -0,5 2,1 0,4 0,8 0,6 0,1 0,4 0,5 -0,4 3,3 0,4 -0,1 1,4 1,1 -3,7 -1,1 -0,1 -0,95 -0,08 0,57 1,73 -0,21 -0,38 -0,55 -1,42 0,43 -1,13 -0,05 -0,02 0,49 2,29 0,41 2,26 1,30 1,32 1,13 0,55 0,62 0,75 0,1 3,26 1,7 0,58 1,63 1,75 -3,0 -2,3 -1,02

20 20 molto vicini non vicini oscilla k ,4 0,16 0,064 0,0256 0, ,0041 0, ,0007 0,0003 0,0001 0,486 0,341 0,281 0,029 -0,011 -0,149 -0,002 0,054 0,095 0,066

21 21 Processo autoregressivo di 2° ordine parametri Stazionarietà Le radici dellequazione caratteristica devono essere esterne al cerchio unitario. Equazione caratteristica Si dimostra che per soddisfare tale condizione si devono verificare, come vedremo poco sotto (correlogramma) le seguenti disuguaglianze

22 22 Le disuguaglianze individuano nel piano la seguente regione triangolare: Media Modello completo (con costante ) Si può facilmente dimostrare che, cioè gli scarti dalla media, siccome: Sono anchessi AR(2), senza costante

23 23 Varianza Piccolo (1970) ha dimostrato che varianza autocov. lag 1,2 e che…… k > 2, è ottenibile dalla usuale relazione di Yule-Walker autocov. gen. Quindi: autocorr.

24 24 Correlogramma Essendo leq. cartesiana di 2° grado, infatti: Il correlogramma può assumere forme più numerose di AR(1), perché le radici possono essere: reali e disuguali reali e coincidenti complesse e coniugate. La forma del correlogramma dipende dai valori assunti dalle soluzioni dellequazione Caratteristica. Box & Jenkins hanno dimostrato che in caso di radici reali si ha: andamenti smorzati

25 25 In caso di radici complesse: andamenti sinusoidali smorzati Autocorrelazione parziale Box & Jenkins dimostrano che: Questi due soli valori hanno andamenti diversi a seconda che le radici siano reali o complesse

26 26 t a t z t t a t z t ,6 -0,4 1,3 -0,4 0,7 1,2 0,4 0,9 -0,1 -0,3 -0,1 0,2 -0,6 -0,4 -0,9 0,0 0,3 -1,6 -0,4 -0,8 -0,1 0,0 1,2 -0,1 0,4 -0,8 -0,2 0,8 0,5 -0,6 1,76 -1,576 1,998 -0,314 0,988 0,244 -0,048 0,039 -0,133 0,288 -0,799 0,137 -0,642 -0,488 0,164 0,495 0,104 -0,363 -0,561 0,164 -0,211 1,359 -0,957 1,246 -1,738 1,092 -0, ,2 0,3 0,6 1,5 -0,9 -0,3 -0,4 -1,2 1,0 -1,3 0,4 0,0 0,5 2,1 -0,5 2,1 0,4 0,8 0,6 0,1 0,4 0,5 -0,4 3,3 0,4 -0,1 1,4 1,1 -3,7 -1,1 -0,1 -0,861 0,776 -0,038 1,678 -1,915 1,185 -1,494 -0,067 1,339 -2,116 1,938 -1,586 1,84 -1,329 0,661 1,439 -0,331 1,285 -0,237 0,499 0,054 0,568 -0,73 3,852 -2,057 1,904 -0,154 1,574 -4,675 2,02 -2,247

27 27 Simulazione di un AR(2) partenza Condizioni di stazionarietà: è quindi stazionario. Utilizzando scarti normali standardizzati si ottengono i valori tabulati con il relativo andamento grafico. Poi, utilizzando le relazioni viste per Si calcoli la funzione di autocorrelazione e dai valori simulati la campionaria.

28 28 Correlogrammi Autocorrelazione parziale k k ,75 0,65 -0,56 0,45 -0,38 -0,68 0,52 -0,24 0,22 -0, ,32 -0,27 0,22 0,19 0,16 0,01 0,10 -0,17 0,18 -0,15

29 29 PROCESSO A MEDIA MOBILE MA(q) Il processo MA(q) è solamente costituito da un numero finito di q termini, cioè: Introducendo loperatore B si ha: che diviene: Dove Denota il cosiddetto operatore MA(q).

30 30 Stazionarietà Siccome loperatore MA(q) è una serie finita, non esistono particolari restrizioni per assicurare la stazionarietà Invertibilità (vedi dopo per maggior dettaglio) Un MA(q) è invertibile quando le radici dellequazione caratteristica sono esterne al cerchio unitario. Media Se le hanno media nulla, è nulla pure la media del processo, quindi:

31 31 Autocovarianza, varianza e autocorrelazione Tenendo conto delle relazioni già viste per il processo lineare si ha: con k = 1,2,…,q. Da cui la varianza: e quindi la autocorrelazione: Se i valori sono noti, oppure stimati, si possono ricavare i parametri. Ovviamente essendo non lineare la relazione funzionale, occorre utilizzare metodi iterativi.

32 32 Si noti che siccome sono indipendenti da t, MA(q), come prima visto, è sempre stazionario. Invertibilità di AR(p) e invertibilità di MA(q) Condizione di invertibilità Tale condizione è molto importante soprattutto a proposito dei modelli MA(q), dal momento che questi ultimi, a differenza degli AR(p), sono caratterizzati dal problema della molteplicità dei modelli. Invertibilità per AR(p) Invertendo si ha:

33 33 Sviluppando in serie il rapporto evidenziato in rosso si ha: per cui: che altro non è (come vedremo fra poco) se non un. Quindi: un AR(p) è sempre trasformabile in un. Invertibilità di MA(q) Sviluppando in serie Quindi: che è un

34 34 Il processo MA(q) si dice allora invertibile se i pesi formano una serie convergente e questo si ottiene se e solo se le radici di sono esterne al cerchio unitario. La condizione di invertibilità, pertanto, ha per i processi MA(q) la stessa importanza che ha la condizione di stazionarietà per i processi AR(p). Processo MA(1) Stazionarietà sempre Media: se anche: Varianza Autocovarianza

35 35 Autocorrelazione Correlogramma 1 k k Una sola ordinata positiva o negativa, a seconda del segno di.

36 36 Invertibilità Si considerino due MA(1), uno con parametro e un altro con, cioè: Calcoliamo. Si ha: Quindi i due processi, pur diversi, hanno la stessa, quindi esiste un problema di molteplicità di modelli. Per risolverlo si consideri:

37 37 Ricorrendo alloperatore B si ha: Se la prima serie converge, mentre la seconda no. Allora se si dice che la prima serie è invertibile, mentre la seconda non lo è. Quindi la condizione assicura lesistenza di un unico modello MA(1). Tale condizione equivale a dire che le radici della equazione caratteristica: siano esterne al cerchio unitario.

38 38 Autocorrelazione parziale Box & Jenkins dimostrano che Da cui si vede come i coefficienti di autocorrelazione parziale hanno un andamento smorzato, anche con oscillazioni di segno. Processo MA(2) Stazionarietà sempre stazionario Invertibilità Il processo è invertibile se le radici dellequazione caratteristica sono in valore assoluto maggiori di uno.

39 39 Si dimostra che tale condizione si verifica se: che individuano il seguente triangolo isoscele Media Se anche

40 40 Varianza, autocovarianza, autocorrelazione Radici reali correlo- gramma Radici complesse

41 41 Autocorrelazione parziale espressione formale in Anderson Radici reali: Radici complesse:

42 42 Principio di dualità tra AR(p) e MA(q) 1) 2) Un AR(p) può essere sempre espresso come una media mobile di infiniti termini, cioè Un MA(q) può essere espresso, se invertibile, come un processo autoregressivo infinito, cioè. 3) I coefficienti di autocorrelazione totale di un MA(r ) si comportano analogamente ai coeff. di autocorrelazione parziale di un AR(r ). Stazionarietàinvertibilità MA incondizionata Le radici delleq. devono essere esterne al cerchio unitario AR Le radici delleq. devono essere esterne al cerchio unitario incondizionata

43 43 I coefficienti di un MA(r) si comportano in modo analogo ai coefficienti di un AR(r) Esempi: AR(1) MA(1) AR(2) MA(2)

44 44 Processo ARMA(pq) (*) residuo o innovazione, indipend. Se non segue tali ipotesi, ma invece si comporta come una media mobile di ordine q e quindi risulta: Sostituendo in (*) si ha: ( ) che è un processo misto autoregressivo di ordine p, con media mobile di ordine q, cioè un ARMA(pq).

45 45 Usando loperatore B si ottiene: dove Stazionarietà Per la condizione di stazionarietà della componente AR(p), le radici dellequazione devono essere esterne al cerchio unitario. Invertibilità Analogamente, per MA(q) le radici di devono anchesse essere esterne al cerchio unitario.

46 46 Media Se ARMA(pq) è completo, cioè è presente anche una costante : da cui: Per cui se Autocovarianza Si indichi con la covarianza tra e, quindi:

47 47 Moltiplicando ( ) per e considerando la media, si ha: ( ) Siccome dipende dai valori generati fino a j = t-k, segue che: Quindi se k>q le e allora la relazione ( ) si riduce a:

48 48 Varianza per k=0 Autocorrelazione Autocorrelazione parziale Se ARMA(pq) è invertibile, Siccome la serie è infinita, anche lautocorrelazione parziale è infinita, con un andamento simile allautocorrelazione parziale di un MA(q).

49 49 Modelli Box & Jenkins per serie non stazionarie in media (modelli ARIMA) Quando le condizioni di stazionarietà richieste per i modelli BJ non sono presenti si possono avere due forme di non stazionarietà: quella esplosiva quella omogenea Si ha la prima quando almeno una radice dellequazione caratteristica è in modulo < 1. Si ha la seconda quando almeno una delle radici dellequazione caratteristica è unitaria (cioè sul cerchio di raggio unitario). I fenomeni socio-economici ben difficilmente presentano non stazionarietà esplosiva, limitandosi a forme omogenee, così dette perché a parte variazioni nel livello e/o nellandamento di fondo (trend), la serie è di tipo stazionario.

50 50 In altri termini la serie non è temporaneamente costante nel suo livello medio, ma comunque tende a disporsi stabilmente intorno a tale livello medio. Trasformazioni stazionarizzanti. Una serie storica in cui è presente una non stazionarietà omogenea è facilmente trasformabile in una di tipo stazionario prendendo un adeguato numero di differenze successive. Esempio: non stazion. omogenea stazion.

51 51 Un possibile modo di rappresentare una serie storica non stazion. omogenea è introdurre in un modello ARMA(pq) un operatore alle differenze finite di ordine opportuno. Integrando le componenti AR(p) e MA(q) con la componente I(d) si ha il modello ARIMA(p,d,q). Per definire formalmente tale modello si deve prima definire loperatore autoregressivo generalizzato che è un polinomiale di grado p+d con d radici uguali ad 1 e le altre p radici maggiori di 1. Pertanto:

52 52 Questo perché d radici sono unitarie. I fattori della parte destra dellequazione meno lultimo sono niente altro che loperatore di un AR(p) stazionario. Quindi: Cioè: * che scritto per esteso diviene:

53 53 Pertanto se La * diviene: che altro non è se non un ARMA sulle differenze di ordine d dei valori. Quindi sostituendo con il processo ARIMA(p,d,q) sulla variabile si riduce ad un ARMA(pq) sulla variabile. Allora il processo non stazionario è esprimibile come combinazione del processo stazionario e delloperatore alle differenze. Tale combinazione determina il processo integrato ARIMA(p,d,q) che pertanto è parte di una classe di processi più ampia di quelli ARMA che da essa discendono.

54 54 La terminologia integrato deriva poi dalla seguente notazione: siccome abbiamo definito ed evidentemente Allora: cioè la serie risulta essere la somma di tutte le variazioni del fenomeno fino al tempo t compreso. Ciò determina, in analogia con le funzioni continue, una sorta di integrazione sulla variabile. Il processo ARIMA(p,d,q) è poi caratterizzato dallessere di tipo omogeneo, indipendente cioè dal livello assunto da.

55 55 Si aggiunga infatti nel modello che esprime una costante arbitraria a tutti i termini fino a quello di ordine t-1 ; in altri termini: che è come dire: Cioè con laumento di tutti i termini della costante c, anche risulta aumentato di c. Quindi una serie non stazionaria ma omogenea si comporta come una serie stazionaria, poiché il suo andamento è indipendente dal livello della serie.

56 56 Casi particolari di ARIMA(p,d,q) Assegnando valori particolari ai parametri si determinano casi di notevole interesse applicativo. caso completo ARIMA(1,1,1) Modello: riscrivibile come Il grafico che segue è relativo ad una configurazione simulata con e ; la riproduzione di configurazioni empiriche di carattere socio-economico è abbastanza evidente.

57 57 t Caso incompleto ARIMA(1,1,0) ARI Modello Una rappresentazione simulata, con mostra anchessa laderenza a possibili configurazioni empiriche.

58 58 caso incompleto ARIMA(0,1,1) IMA Modello caso incompleto con costante Se in un ARIMA(p,d,q) le differenze prime: sono stazionarie, la presenza di una costante in AR provoca una media diversa da 0 data da:

59 59 Se ciò significa che la media delle differenze prime tende a crescere o a decrescere. Quindi la costante introduce un trend crescente o decrescente Modello ARIMA(1,1,1) con e parametri. Ponendo nella * :

60 60 Che è un ARMA applicato alle differenze di ordine d degli, invece che ai valori medesimi. In altri termini, sostituendo con, il processo ARIMA(p,d,q) sulla variabile si riduce ad un processo ARMA(p,q) applicato alla variabile. In questo modo il processo non stazionario è espresso in funzione delloperatore stazionario e delloperatore alle differenze finite. Ovviamente la classe di modelli ARIMA(p,d,q), essendo ancor più generale di quella ARMA, include gli stessi.


Scaricare ppt "1 MODELLI DI SERIE STORICHE Approccio Classico Modelli di composizione: - componenti trend ciclo stagionalità comp.accidentale - tipi di composizione :"

Presentazioni simili


Annunci Google