La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Inferenza su proporzioni Sinossi. Correzione per continuità con la distribuzione binomiale: determinare la probabilità di due o meno di otto o più successi.

Presentazioni simili


Presentazione sul tema: "Inferenza su proporzioni Sinossi. Correzione per continuità con la distribuzione binomiale: determinare la probabilità di due o meno di otto o più successi."— Transcript della presentazione:

1 Inferenza su proporzioni Sinossi

2 Correzione per continuità con la distribuzione binomiale: determinare la probabilità di due o meno di otto o più successi quando n=10 e π= 0.5

3 Confronto diMetodoTabelle statistiche 1 proporzioneEsattouso della distribuzione binomiale Qui non riportate ; si calcolano a mano Approx approssimazione normale alla distribuzione binomiale con correzio­ne per la continuità Aree sottese alla curva normale Approx chi-quadrato con 1 g.l. e correzione per continuità (Nota: i metodi 2 e 3 sono algebricamente identici) Chi-quadrato con 1 g.l. 2 proporzioni in campioni indipendenti Esattotest esatto di Fisher Approssimato rapporto critico di differenza tra le proporzioni (con correzione per la continuità) relativo all'errore standard della differenza Aree sottese alla curva normale Approssimato: chi-quadrato con 1 g.l. e correzione di Yates per continuità (Nota: i metodi 2 e 3 sono algebricamente identici) Chi-quadrato con 1 g.l. 2 proporzioni in campioni appaiati Test di Mc Nemar Il metodo si basa sulla eliminazione delle coppie con risposte congiunte ed analizza soltanto le coppie con risposte disgiunte Non riportate isi calcolano a mano Distribuzione binomiale esatta con p=1/2 Approssimato approssimazione normale alla binomiale con -p=1/2 e correzione per la continuità Aree sottese alla curva normale Approssimato chi-quadrato con 1 g.l. e correzione per la continuità (Nota: i metodi 2 e 3 sono alge­bricamente identici) Chi-quadrato con 1 g.l. proporzioni in campioni indipendenti Approx chi-quadrato con k - 1 g.l. dove k denota il numero di proporzioni campionarie Chi-quadrato con k-1 g.l. più di 2 proporzioniApproxin campioni indipendentiNon riportato

4 Teorema del limite centrale p è una media ; p = r = Varianza (p) =Varianza (r) = Errore standard(r) =Errore standar di (p) = La curva normale si applica per

5 Risultato osservato campione di n repliche Media della popolazione Errore standardCoda di sinistraCoda di destra Numero di successi Proporzione di successi RIASSUNTO DEI RISULTATI DI UNA DISTRIBUZIONE BINOMIALE (Tab5.1)

6 LIMITI DI CONFIDENZA DI UNA PROPORZIONE Consideriamo una % osservata del 56% di polmonite atipica in un campione di 25 soggetti. Abbiamo un intervallo di confidenza al 95% nella popolazione sottostante per la proporzione di polmonite atipica pari a = ,195 = (da a 0.755)

7 DETERMINAZIONE DELLA DIMENSIONE DEL CAMPIONE risolvendo per n ed eliminando p

8 CampioneGruppo sottoposto a trattamento Gruppo di controllo Totale POPOLAZIONE Proporzione di successi CAMPIONE Dimensione del campione Numero di successi Proporzione di successi =( + )/ ( + ) CONFRONTO DI PROPORZIONI = / + + / =

9 TEST DIPOTESI quindi s.e.( - ) poniamo = ( + )/( + )

10 Altre caratteristiche dei test di significatività Usando l'approssimazione normale alla binomiale, si può rispondere ad altri quesiti riguardanti i test di significatività che implicano l'uso inverso delle formule date nella tabella [1]. Ad esempio, specificando il livello di significatività e l'ipotesi nulla si può determinare il numero di successi che sono necessari per ottenere la significatività statistica.

11 Esempio 3. Si consideri una prova di due analgesici, A e B, condotta in modo simile a quella descritta precedentemente, ma con la partecipazione prevista di un centinaio di pazienti affetti da emicrania cronica. Se il ricercatore saggia l'ipotesi nulla che gli analgesici siano ugualmente preferibili ed usa un test a due code al livello del 5%, quante preferenze deve osservare, per ciascuno dei due farmaci, per rifiutare l'ipotesi nulla? Come precedentemente, =pr(preferenze per A) e l'ipotesi nulla afferma che = ½. Dal momento che n = n(1 - )= (100) (½) = 50, che è ben più di 5, si può usare la distribuzione normale. Il test a due code a livello del 5% significa il 5% nelle due code della distribuzione normale, precisamente i valori di z pari a e II rapporto critico per il «numero di successi» nella [1] dà, nella coda di destra, Risolvendo per x si ha:x = (l.96) (5) = Nella coda di sinistra z = comporta x =(-1.96)(5) = Fin qui gli esempi numerici hanno comportato =(½); Naturalmente può non essere così e l'interesse può accentrarsi sulla verifica di ipotesi che implicano valori di diversi da (½).

12 Esempio [4]. Nelle truppe degli Stati Uniti residenti in una base aerea in Italia meridionale verso la fine della seconda Guerra Mondiale, ci fu un'epidemia di polmonite ati- pica nella quale il 40% di parecchie centinaia di uomini di uno squadrone con- trassero la malattia. Durante la ricerca su questa epidemia, i tassi di attacco della malattia furono calcolati in accordo ai diversi ruoli che questi soldati rico- privano nella base. In un caso, 14 (cioè il 56%) dei 25 uomini appartenenti all'equipaggio addetto a terra alle comunicazioni, contrassero la malattia. Esiste evidenza che tale equipaggio abbia avuto un tasso di attacco più alto dell'intero squadrone? Considerando che il tasso di attacco totale fu del 40%, l'attacco osservato del 56% fra questi 25 uomini fu qualcosa di eccezionale? Oppure questo tasso di attacco campionario potrebbe essersi verificato puramente per caso? Si consideri un test di significatività con questi dati. L'ipotesi nulla stabilisce che l'equipaggio addetto a terra alle comunicazioni eb- be lo stesso tasso d'attacco della rimanente popolazione, precisamente, =0.4. Se l'ipotesi nulla di un tasso di attacco della popolazione del 40% è vera, quale è la probabilità di trovare in un campione di 25 unità un tasso di attacco del 56% o maggiore

13 Esempio [4]. Si supponga che quella del 5% sia giudicata una probabilità abbastanza bassa e che l'interesse si accentri su un test a due code. (Quest'ultima specificazione indica che il ricercatore, prima di esaminare i suoi dati campionari, è parimenti interessato tanto alla possibilità che l'equipaggio addetto a terra alle comunicazioni abbia avuto un tasso d'attacco più alto dell'intero squadrone, quanto che l'abbia avuto più basso. Si può facilmente vedere che sono soddisfatte le condizioni per l'applicazione della distribuzione normale, come approssimazione alla binomiale, precisamente Dalle tabelle a due code della distribuzione normale, la probabilità richiesta è 0.153, Cosi il tasso osservato nel campione si può ben spiegare con una variazione casuale o di campionamento. Quindi il tasso dattacco dell'equipaggio addetto a terra alle comunicazioni è compatibile con quello dell'intero squadrone (P > 0.05). L'uso del rapporto critico per le percentuali [1] dà:

14 Esempio 5 (terapia farmacologica nellIMA) La fornisce un'illustrazione ideale per il confronto di proporzioni indipendenti. Questi dati si riferiscono ad una sperimentazione clinica del propranololo su pazienti affetti da infarto miocardico. I due gruppi di pazienti sono quelli trattati con propranololo e un gruppo di controllo che non riceve il farmaco. La risposta dicotomica consisteva nell'essere ciascun paziente ancora vivo al ventottesimo giorno dopo la sua ammissione allo studio. o nell'essere egli venuto a mancare in un certo momento compreso entro questo periodo di 28 giorni. Sono riprodotti qui sotto i dati relativi, insieme con i tassi di sopravvivenza, in ciascuno Risposta Trattato propranololo % trattato placebo %Totale Sopravvissuti 28 giorni38(84.4%)29(63.0%)67 Non sopravvissuti71724 Totale (73.6%)

15 Esempio 5 (terapia farmacologica nellIMA) Questi risultati campionari forniscono sufficiente evidenza che il propranololo aumenta il tasso di sopravvivenza nei 28 giorni se confrontato con un controllo? Se di fatto non ci fosse differenza nei tassi di sopravvivenza tra la sottostante popolazione dei trattati con propranololo e la popolazione di controllo, e verosimile che con i campioni di cui sopra si possa osservare uno scarto uguale o maggiore a quello osservato, puramente per caso? Si supponga di adottare il livello di significatività del 5% e di desiderare un test a due code.

16 Risposta: In primo luogo, e così appropriata usare il test basato sulla distribuzione normale? Chiaramente p = 67/91 = , e q = 1- p = Dal momento che n T = 45 e n C = 46, si può vedere che n T p, n T q, n C p ed n C q saranno certamente più alti di 5. Allora si può usare con sicurezza il test basato sulla distribuzione normale. Dal momento che il tasso di sopravvivenza del gruppo trattato con propranololo è maggiore di quello del gruppo di controllo, il rapporto critico con la correzio-ne per la continuità diviene: Le tabelle a due code della distribuzione normale danno una probabilità di La conclusione e che i pazienti trattati con propranololo hanno un tasso di sopravviven- za a 28 giorni significativamente maggiore di quello del gruppo di controllo non trattato col propranololo (P<0.05). In altre parole la differenza osservata nei tassi di sopravviven- za non può spiegarsi come effetto del caso o della fluttuazione di campionamento.


Scaricare ppt "Inferenza su proporzioni Sinossi. Correzione per continuità con la distribuzione binomiale: determinare la probabilità di due o meno di otto o più successi."

Presentazioni simili


Annunci Google