La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Esercizi Uno studente misura il diametro di una popolazione di 100 cellule, trovando come risultato per il valor medio: d medio = 8.03 ± 0.06 m Supponendo.

Copie: 1
Esercizi Uno studente misura il diametro di una popolazione di 100 cellule, trovando come risultato per il valor medio: d medio = 8.03 ± 0.06 m Supponendo.

Presentazioni simili


Presentazione sul tema: "Esercizi Uno studente misura il diametro di una popolazione di 100 cellule, trovando come risultato per il valor medio: d medio = 8.03 ± 0.06 m Supponendo."— Transcript della presentazione:

1 Esercizi Uno studente misura il diametro di una popolazione di 100 cellule, trovando come risultato per il valor medio: d medio = 8.03 ± 0.06 m Supponendo che la distribuzione dei valori sia di tipo gaussiano, trovare lintervallo [x 1, x 2 ], simmetrico rispetto al valor medio, corrispondente alla probabilità dell85% che una misura vi cada allinterno. Dalla tabella relativa alla distribuzione gaussiana si trova che lintervallo dell85% corrisponde ad un t = 1.44, Dove il valore vero corrisponde al valor medio e la larghezza corrisponde alla deviazione standard Gli estremi dellintervallo si calcolano come: x 1 = t x 2 = t Essendo noti il numero di misure e la deviazione standard della media, si ricava la deviazione standard come: E quindi:

2 Esercizi In un allevamento ci sono pecore il cui peso medio è di 45.5 ± 0.05 kg. Se i pesi degli ovini sono distribuiti secondo una curva gaussiana, dare il numero N 1 dei capi con peso compreso tra 43 e 48 kg e il numero N 2 dei capi con peso inferiore a 55 kg La distribuzione del peso degli ovini è centrata sul valore medio 45.5 kg con deviazione standard pari a: Per il calcolo di N 1 si ha a che fare con un intervallo simmetrico [43-48] kg rispetto al valore medio 45.5 kg. Per il calcolo della probabilità associata a tale intervallo si ricava dapprima il valore di t e poi si guarda la tabella della gaussiana: Vi è quindi una probabilità del 25.86% che le pecore abbiano un peso tra 43 e 48 kg. Essendo le pecore totali ne consegue che: (segue)

3 Esercizi In un allevamento ci sono pecore il cui peso medio è di 45.5 ± 0.05 kg. Se i pesi degli ovini sono distribuiti secondo una curva gaussiana, dare il numero N 1 dei capi con peso compreso tra 43 e 48 kg e il numero N 2 dei capi con peso inferiore a 55 kg Per il calcolo di N 2 si ha a che fare con un intervallo NON simmetrico. Il numero di ovini con peso inferiore a 55 kg si trova andando a determinare dapprima il valore di t corrispondente a 55: Dalla tabella della gaussiana, si trova che P(t=1.25) = 78.37% e corrisponde alla probabilità di avere ovini con peso compreso tra 36 e 55 kg (segue) Devo tuttavia considerare anche tutti gli ovini con peso inferiore ai 36 kg (coda a sinistra della curva).

4 Esercizi In un allevamento ci sono pecore il cui peso medio è di 45.5 ± 0.05 kg. Se i pesi degli ovini sono distribuiti secondo una curva gaussiana, dare il numero N 1 dei capi con peso compreso tra 43 e 48 kg e il numero N 2 dei capi con peso inferiore a 55 kg E sufficiente ricordarsi che larea totale sottesa dalla gaussiana corrisponde al 100% La probabilità di avere un peso inferiore a 55 kg è quindi pari a : Da cui il numero di pecore: :

5 Esercizi Una grandezza è distribuita normalmente attorno al valore 30 con deviazione standard pari a 3. Quale è la percentuale di misure che ci aspetta essere comprese tra 31 e 33? Lintervallo considerato è un intervallo non simmetrico in cui entrambi gli estremi si trovano a destra del valore centrale della distribuzione: Sostituendo i valori degli estremi x 1 e x 2, del valore medio e della deviazione standard si ricavano i due valori di t : Dalla tabella della gaussiana si trova: P(t 1 )= % (figura A) e P(t 2 )=68.27 % (figura B) x 1 = t 1 x 2 = t 2 (segue)

6 Esercizi Una grandezza è distribuita normalmente attorno al valore 30 con deviazione standard pari a 3. Quale è la percentuale di misure che ci aspetta essere comprese tra 31 e 33? Guardando le curve la probabilità associata allintervallo non simmetrico si ricava come:

7 Esercizi Sia data una distribuzione centrata intorno a 25 con larghezza sigma 1.3. Trovare: (a)lintervallo corrispondente alla probabilità del 68.27%; (b)La probabilità di trovare un valore compreso tra 21.9 e a) La probabilità del 68.27% corrisponde allintervallo: [ ] Quindi: b) Lintervallo è non simmetrico. Calcolo i valori di t relativi ai due estremi: Dalla tabella della gaussiana: P(t 1 )= % P(t 2 )= 30 % P(t1)P(t2) (segue)

8 Esercizi Sia data una distribuzione centrata intorno a 25 con larghezza sigma 1.3. Trovare: (a)lintervallo corrispondente alla probabilità del 68.27%; (b)La probabilità di trovare un valore compreso tra 21.9 e P(t1) /2 P(t2) /2 Osservando le aree e sfruttando la simmetria della curva si trova:


Scaricare ppt "Esercizi Uno studente misura il diametro di una popolazione di 100 cellule, trovando come risultato per il valor medio: d medio = 8.03 ± 0.06 m Supponendo."

Presentazioni simili


Annunci Google