La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

DISTRIBUZIONI TEORICHE DI PROBABILITA. DEFINIZIONI: Qualsiasi caratteristica misurabile è denominata variabile. Se una variabile può assumere numerosi.

Presentazioni simili


Presentazione sul tema: "DISTRIBUZIONI TEORICHE DI PROBABILITA. DEFINIZIONI: Qualsiasi caratteristica misurabile è denominata variabile. Se una variabile può assumere numerosi."— Transcript della presentazione:

1 DISTRIBUZIONI TEORICHE DI PROBABILITA

2 DEFINIZIONI: Qualsiasi caratteristica misurabile è denominata variabile. Se una variabile può assumere numerosi valori tali che qualsiasi risultato è determinato dal caso, essa è nota come variabile casuale Una V.C. è un numero X che assume un valore in R, determinato sulla base di un evento E che si è presentato in seguito allesperimento al quale si riferisce. Tale numero è assunto da X con probabilità P Una distribuzione di probabilità è una funzione che sintetizza la relazione tra i valori di una variabile casuale e la probabilità che questi si presentino Una distribuzione di probabilità applica la teoria della probabilità per descrivere il comportamento di una variabile.

3 … La conoscenza della distribuzione di probabilità di una variabile casuale fornisce ai clinici e ai ricercatori uno strumento potente per riassumere e descrivere il set di dati e per trarre conclusioni a partire dal campione della popolazione studiata Una distribuzione di probabilità può essere rappresentata con una tabella, un grafico o una formula

4 Una distribuzione è analoga ad una distribuzione di frequenze relative, ma mentre questa si ricava da un campione di osservazioni estratte da un popolazione, una distribuzione di probabilità è in relazione alla popolazione di tutti i possibili risultati Una distribuzione continua non permette la stima della probabilità di estrarre un particolare valore, ma solo quelli compresi in un dato intervallo. Per esempio, nella distribuzione delle altezze di una popolazione di studenti, non è possibile stimare la probabilità di avere un individuo alto esattamente 176,000 cm ma quella di avere un individuo tra 180 e 190 centimetri OSSERVAZIONI

5 – La forma di una distribuzione di probabilità continua è usualmente definita da una curva senza sbalzi, mentre per una variabile discreta la probabilità è definita per i valori puntuali della variabile, e il grafico della distribuzione rassomiglia ad una serie di impulsi – La forma di una distribuzione può essere simmetrica rispetto al valore centrale o ci può essere una coda più lunga da un lato piuttosto che da un altro. Se la coda è a sinistra (destra) la distribuzione viene detta asimmetrica a sinistra (destra) - Alcune distribuzioni teoriche di probabilità comunemente usate per descrivere dati sanitari sono: Distribuzione Gaussiana, la distribuzione log-normale, la distribuzione Binomiale e la distribuzione di Poisson

6 Nel caso si osservino Variabili continue le distribuzioni permettono di determinare le probabilità associate a determinati range di valori della variabile (Distribuzione Normale) V.C. continua: Livello di colesterolo nel sangue DISTRIBUZIONI DI PROBABILITA PER VARIABILI CONTINUE

7 La Distribuzione Gaussiana Le distribuzioni normali sono una famiglia di curve simmetriche a forma di campana e unimodali (moda media e mediana coincidono). Hanno tutte la stessa forma ma sono caratterizzate (e completamente individualizzate) dai due valori: media e varianza N(μ,σ2). Densità di Probabilità Larea totale sotto la curva è 1

8 La curva Normale è Unimodale e simmetrica rispetto alla sua media (μ) Frequenza relativamente più elevata dei valori centrali e frequenze progressivamente minori verso gli estremi. La media, la mediana e la moda della distribuzione coincidono La Deviazione Standard, rappresentata da, indica la quantit à di dispersione delle osservazioni intorno alla media I parametri μ e σ definiscono in modo completo la curva 1. Caratteristiche di una distribuzione Normale

9 2. Caratteristiche di una distribuzione Normale La funzione di densità è simmetrica rispetto alla media: cresce da zero fino alla media e poi decresce fino a +. Ha due flessi: il primo, ascendente, nel punto μ-σ; il secondo, discendente, nel punto μ+σ. Se μ varia e σ rimane costante, si hanno infinite curve normali con la stessa forma e la stessa dimensione, ma con l'asse di simmetria in un punto diverso. Quando due distribuzioni hanno media differente, è possibile ottenere l'una dall'altra mediante traslazione o trasformazione lineare dei dati. Se invece μ rimane costante e σ varia, tutte le infinite curve hanno lo stesso asse di simmetria; ma hanno forma più o meno appiattita, secondo il valore di σ.

10 Le due curve della figura 11 hanno media μ identica e deviazione standard σ differente.

11 Le due curve della figura 12 hanno deviazione standard σ identica e media μ differente.

12 In Figura 13 sono riportate 2 distribuzioni normali che differiscono sia per la media sia per la dispersione dei dati

13 3. Caratteristiche di una distribuzione Normale La probabilità che un valore estratto a caso da una N(μ,σ 2 ) sia compreso nellintervallo (μ -σ, μ+σ) è pari a e che sia compreso tra (μ -2σ, μ+2σ) è pari a 0,954 Il 95% dei valori centrali di una distribuzione Normale cadono nellintervallo (μ σ, μ+1.96σ) ed il 99% nellintervallo (μ – 2.58σ, μ+2.58σ)

14 AREE SOTTO LA CURVA NORMALE COMUNEMENTE USATE

15 Poiché i valori di μ e σ dipendono dal particolare problema in considerazione le probabilità di trovare dei valori in un determinato intervallo, anche diverso da quelli comunemente usati, e descritti nel grafico precedente, diventa complicato. Non ci sono tavole di probabilità per tutti i possibili valori di μ e σ, esiste una tavola unica che può essere usata per tutte le variabili Normali. Tale tavola si riferisce ad una particolare distribuzione: la ditribuzione Normale Standardizzata. La distribuzione normale standardizzata o normale ridotta, si ottiene mediante il cambiamento di variabile dato da

16 La standardizzazione è una trasformazione che consiste nel: - rendere la media nulla (μ = 0), poiché ad ogni valore viene sottratta la media; - prendere la deviazione standard σ come unità di misura (σ = 1) della nuova variabile. La distribuzione normale ridotta viene indicata con N(0,1), che indica appunto una distribuzione normale con media 0 e varianza uguale a 1. In ogni distribuzione Normale con media μ e d.s. σ, la probabilità tra x 1 e x 2 è la stessa che tra z 1 e z 2 nella distribuzione Normale Standardizzata, dove z 1 =(x 1 - μ)/ σ z 2 =(x 2 - μ)/ σ

17 In una Distribuzione Normale Standardizzata: La probabilità che un valore estratto a caso sia compreso tra - 1 e 1 è pari a 0,683 e che sia compreso tra -2 e 2 è pari a 0,954 Il 95% dei valori centrali di una distribuzione Normale standard cadono nellintervallo (-1.96,+1.96) ed il 99% nellintervallo (– 2.58, +2.58) Tutti i valori di probabilità per z sono riportati in una tavola, detta tavola di probabilità I valori nel corpo della tabella mostrano larea sotto la curva N.S. alla destra di z. Queste sono le probabilità di trovare un valore uguale o superiore a z Caratteristiche di una Distribuzione Normale Standard

18 Area a dx di Z

19

20

21 Uso della tavola di Probabilità Gaussiana Due sono gli usi della tavola di probabilità: 1) Definito un intervallo di valori di X, serve per calcolare la probabilità che un valore x cada al suo interno 2) Definita una probabilità, serve per calcolare lintervallo dei valori X che corrisponde a tale probabilità.

22

23

24

25 Esercizio Si consideri una popolazione con altezza distribuita in maniera Gaussiana con media (µ) =172,5 cm e deviazione standard (σ) = 6,25 cm. Qual è la probabilità di incontrare un individuo estratto da tale popolazione e di altezza superiore a cm 190? Z = (190 – 172,5) / 6,25 = 2,8 Dalle tavole trovo p= 0,00256, quindi la probabilità di trovare un soggetto più alto di 190cm è dello 0,2%

26 Qual è la probabilità di incontrare un individuo estratto da tale popolazione con unaltezza compresa tra cm 165 e175? Z 1 = (165 – 172,5) / 6,25 = -1.2 Z 2 = (175 – 172,5) / 6,25 = 0.4 P(Z 1 )=0.115 P(Z 2 )=0.345 P(165 X 175) = P(-1.2 Z 0.4) = 1- [ ]=0.54

27 Qual è quel valore di altezza che delimita il 5% superiore della distribuzione? p=0.05 z =1.645 z =(x-172.5)/ =(x-172.5)/6.25 x = (6.25*1.645) x = Circa il 5% della popolazione in studio ha unaltezza superiore di cm

28

29

30

31

32

33

34 LA DISTRIBUZIONE LOG NORMALE Quando i dati hanno una distribuzione differente dalla normale, spesso una semplice trasformazione riconduce ad una distribuzione normale. E' il caso delle trasformazioni con la radice quadrata o cubica, oppure con il reciproco, lelevamento a potenza o con i logaritmi. Nel caso in cui una distribuzione abbia una lunga coda a destra (asimmetrica a destra), si ottiene una distribuzione più simmetrica, se invece della distribuzione originale sui dati (x) si considera la distribuzione dei dati trasformati in logaritmi (y = log(x)) Nel caso in cui la distribuzione della variabile trasformata (y) risulti Normale, la distribuzione dei dati originali (x) è detta log-Normale

35 VANTAGGI DELLA TRASFORMAZIONE LOG 1.Molte tecniche statistiche inferenziali si basano sullassunzione di normalità dei dati. Anche se tali tecniche sono robuste verso le deviazioni dalla normalità, forti asimmetrie porterebbero a stime distorte 2.Se una variabile ha una d.s. che è proporzionale alla sua media, la sua trasformazione log, y = log(x) dà luogo a una variabile y con d.s. costante al variare della media 3.La trasforamzione logaritmica linearizza le curve che hanno una forma esponenziale, i dati trasformati saranno più semplici da analizzare ed interpretare

36 SVANTAGGI DELLA TRASFORMAZIONE LOG 1.Il logaritmo di 0 è -, il che causa problemi quando sono presenti dei dati con un numero limitato di zeri. Unapprossimazione può essere realizzata assegnando ai valori zero la metà del valore della più piccola osservazione. 2.Non esiste il logaritmo di un numero negativo 3. Linterpretazione dei risultati su scala logaritmica è difficile e quasi sempre richiede luso dellanti logaritmo

37 DATI GREZZIDATI LOG-TRASFORMATI

38 Nel caso si osservino Variabili discrete le distribuzioni specificano tutti i possibili risultati della variabile casuale insieme alla probabilità che ciascuno di essi si verifichi V.C. discreta: Numero di figli maschi in famiglie con 4 figli residenti in Toscana nel 1991 DISTRIBUZIONI DI PROBABILITA PER VARIABILI DISCRETE # MASC HI FR

39 DISTRIBUZIONE BINOMIALE (1) Consideriamo un esperimento con solo due tipi di risultati possibili (es: Successo (1) - Non Successo (0)) rispettivamente con probabilità p e q=1-p. Ripetendo n volte l'esperimento in modo che le ripetizioni diano luogo a risultati indipendenti la somma delle realizzazioni 0,1 coinciderà con il numero di successi k. indipendenti Tale numero è una nuova variabile casuale (o meglio aleatoria), somma di n variabili casuali bernoulliane indipendentiindipendenti La v.c. Binomiale è definita dalla seguente funzione di probabilità :probabilità tale funzione esprime la probabilità della concomitanza di k successi (indipendentemente dall'ordine) che si alternano agli n - k insuccessi. Il coefficiente binomiale: (coefficienti binomiali)coefficienti binomiali esprime le distinguibili maniere in cui possono essere ripartiti i k successi negli n tentativi, ed, ovviamente,

40 per il binomio di Newton vale:binomio di Newton k è un numero intero non negativo (k=0,1,2,3,...,n) p è un valore compreso tra 0 e 1 esclusi (0

41

42 LE DISTRIBUZIONI t di STUDENT e Χ 2 ( chi-quadrato) Le distribuzioni t, Χ 2 e F non sono distribuzioni per dati osservati ma sono distribuzioni che si usano per calcolare intervalli di confidenza ed eseguire test di significatività Queste distribuzioni sono utili quando si considerano distribuzioni di probabilità di certe STATISTICHE calcolati su campioni casuali estratti da popolazioni Gaussiane La distribuzione t si usa per fare inferenza sulle medie quando non si conosce la deviazione standard della popolazione La distribuzione Χ2 si utilizza per fare inferenza su frequenze osservate e su conteggi


Scaricare ppt "DISTRIBUZIONI TEORICHE DI PROBABILITA. DEFINIZIONI: Qualsiasi caratteristica misurabile è denominata variabile. Se una variabile può assumere numerosi."

Presentazioni simili


Annunci Google