La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Argomenti della lezione Moto nel piano Descrizione del moto nel piano con coordinate cartesiane – polari - intrinseche Moto circolare Moto parabolico Lezione.

Presentazioni simili


Presentazione sul tema: "Argomenti della lezione Moto nel piano Descrizione del moto nel piano con coordinate cartesiane – polari - intrinseche Moto circolare Moto parabolico Lezione."— Transcript della presentazione:

1 Argomenti della lezione Moto nel piano Descrizione del moto nel piano con coordinate cartesiane – polari - intrinseche Moto circolare Moto parabolico Lezione 2

2 Concetto di vettore che individua il punto nel piano. Posizione individuata anche da coordinate (cartesiane o polari) Moto nel piano

3 Vettore spostamento / Vettore posizione Moto nel piano Posizione: r(t)=OP=x(t)u x +y(t)u y Velocità istantanea Analogamente per laccelerazione:

4 Posizione: r(t)=OP=x(t)u x +y(t)u y Moto nel piano Coordinate cartesiane

5 Moto nel piano Coordinate polari Posizione: r(t)=OP=x(t)u x +y(t)u y =r(t) u r x y O urur u

6 Il vantaggio della notazione vettoriale sta nel fatto che è indipendente dal sistema di coordinate, e quindi permette di scrivere in maniera semplice le equazioni senza preoccuparsi di definire un sistema di coordinate. Consideriamo Coordinate intrinseche s coordinata curvilinea

7 Coordinate intrinseche accelerazione Accelerazione tangenziale Accelerazione normale o centripeta

8 Moto circolare x y O unun utut s R costante! Moto circolare uniforme ha accelerazione normale alla traiettoria Moto periodico con periodo

9 Moto circolare Esempio Il rotore di una centrifuga ruota a 3000 giri/min. A quanti radianti al secondo equivale questa velocità angolare? Sapendo che il rotore ha un diametro di 30 cm, calcolare il modulo della velocità tangenziale e dell'accelerazione centripeta. Un giro del rotore è uguale a radianti, dunque la velocità angolare è: = 3000 (rad/min) = rad/min = rad/sec. Il modulo della velocità tangenziale è r: v = ( r / T) = r da cui si ottiene: v = 100 rad/sec 0,15 m = m/sec Il modulo dell'accelerazione centripeta è 2 r=v 2 /r=15000m/sec 2.

10 Moto parabolico Condizioni iniziali: al tempo t=0 s ho accelerazione in modulo g, velocità iniziale v 0, posizioni iniziali x e y uguali a zero. Scopo: trovare la legge oraria Metodo: scomporre le componenti dei vettori!!

11 Moto parabolico Nel nostro caso

12 Moto parabolico Ricordiamo il caso unidimensionale

13 Moto parabolico Ricordiamo il caso unidimensionale

14 Moto parabolico Equazione della traiettoria Moto di tipo parabolico

15 Moto parabolico Calcolo di gittata e massima quota raggiunta dalloggetto per il calcolo della gittata OG impongo y=0 e ottengo notiamo che il massimo viene raggiunto per il valore

16 Moto parabolico Esempio Un arciere lancia una freccia in aria con un'inclinazione di 60 gradi, ad una distanza di 36 metri da un bersaglio posto a 2 metri dal suolo. La freccia viene scoccata da un'altezza di 1.5 metri dal terreno e con una velocità iniziale, V 0 di 20 m/s. Verificare se la freccia riesce a colpire il bersaglio. Soluzione: Incognite:t volo (tempo necessario affinché la freccia copra la distanza di 36 metri); y(t volo ) (altezza della freccia dopo i 36 metri di volo); Per determinare la velocità iniziale della freccia: V 0x = V 0 *cos(q) Quindi V 0x = 10 m/s Per il calcolo del tempo di volo t volo : t volo =x/V 0x =36m/10m/s=3.6 s Per determinare V 0y : V 0y = V 0. sen(q)= 17 m/s Per determinare y(t volo ): y(t volo ) = (V 0y *t volo ) + (1/2g*t volo 2 )= (17 m/s *3.6 s) +(- 4.9 m/s 2 * 13 s 2 ) = -2.3 m Dal risultato negativo si deduce che la freccia cade in anticipo e quindi il bersaglio non viene colpito. Affinché il bersaglio venga colpito y(t) avrebbe dovuto essere uguale a 0.5 m.


Scaricare ppt "Argomenti della lezione Moto nel piano Descrizione del moto nel piano con coordinate cartesiane – polari - intrinseche Moto circolare Moto parabolico Lezione."

Presentazioni simili


Annunci Google