La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

DISEQUAZIONI Una disequazione è una relazione tra 2 membri in cui compaiano in almeno uno di essi delle incognite e tra di loro uno dei seguenti segni.

Presentazioni simili


Presentazione sul tema: "DISEQUAZIONI Una disequazione è una relazione tra 2 membri in cui compaiano in almeno uno di essi delle incognite e tra di loro uno dei seguenti segni."— Transcript della presentazione:

1 DISEQUAZIONI Una disequazione è una relazione tra 2 membri in cui compaiano in almeno uno di essi delle incognite e tra di loro uno dei seguenti segni >, <, o

2 Disequazioni ad una incognita Una disequazione è ad una incognita se di incognite ne compare una sola Il grado della disequazione è il grado più altro in cui compare lincognita È scritta in forma normale se al secondo membro compare solo lo zero (si ottiene ciò portando tutti i termini dal 2° al 1° membro cambiandoli di segno) Disequazione di 2° grado scritta in forma normale:

3 Soluzioni di una disequazione Sono tutti i valori dellincognita che la soddisfano Ad esempio È soddisfatta per x-2 Nel caso di disequazioni di 1° grado si ottiene ciò isolando al 1° membro i termini con la x e portando al 2° i termini noti; quindi si divide per il coefficiente della x tenendo presente che se si divide per un numero negativo il verso della disuguaglianza cambia ( e viceversa). Le soluzioni di una disequazione possono anche essere indicate come intervalli, nel nostro caso x є(-;2] Per indicare che lintervallo contiene gli estremi si usa la parentesi quadra, altrimenti quella tonda

4 Grafico delle soluzioni Per disegnare il grafico delle soluzioni si traccia dapprima la retta dei numeri reali In essa si individuano i punti che sono soluzione dellequazione associata e in corrispondenza di essi si traccia una barra verticale Sopra la retta dei reali si traccia una semiretta continua in corrispondenza dei valori che soddisfano la disequazione e tratteggiata in corrispondenza dei valori che non la soddisfano Ad esempio Si trasporta il termine noto nel 2° membro: -2x-4 Si divide i 2 membri per -2 (la disuguaglianza cambia verso) x2 Si traccia lasse reale col numero soluzione dellequazione associata x=2 La semiretta da - a 2(compreso) sarà disegnata in modo continuo La semiretta tra 2 e + sarà disegnata in modo tratteggiato 2 R

5 Soluzioni di disequazioni di 2° grado ad una incognita Risolvere la disequazione equivale a trovare quando la parabola associata si trova al di sopra (1° e 4° caso) o al di sotto (2° e 3° caso) dellasse x Nel 1° e 3° caso, essendo il coefficiente del termine di 2° grado >0, la parabola ha la concavità rivolta verso lalto nel 2° e 4° la parabola ha concavità rivolta verso il basso –Se non vi sono punti dincontro con lasse x (soluzioni dellequazione associata), o vi è un solo punto dincontro, cioè se il delta0, il 1° e 2° caso sono sempre veri, il 3° e 4° mai (nel caso la disequazione sia di tipo o occorre considerare che lequazione può essere soddisfatta o non soddisfatta solo per i punti che rappresentano le soluzioni dellequazione associata) – Se vi sono punti dincontro con lasse x, cioè se il delta>0, il 1° e 2° caso è vero per valori esterni alle radici, il 3° e il 4° per valori interni

6 Soluzioni di disequazioni di 2° grado ad una incognita Si risolve lequazione associata Se il coefficiente del termine di 2° grado è positivo il polinomio è positivo per valori esterni alle soluzioni x x 2 che si può indicare anche come x є(-;x 1 )U(x 2 ; +) Se il coefficiente del termine di 2° grado è negativo il polinomio è positivo per valori interni alle soluzioni x 1

7 Soluzioni di disequazioni di 2° grado: esempio Si risolve lequazione associata x 1 =1/3, x 2 =1 Poiché il coefficiente del termine di 2° grado è >0 la disequazione è soddisfatta per valori esterni alle radici Si traccia lasse reale con i valori delle radici trovate Il segmento tra 1/3 e 1 sarà disegnato in modo continuo (sono esclusi gli estremi) Le semirette da - a 1/3 e da 1 a + saranno disegnate in modo tratteggiato 1 R 1/3

8 Sistemi di disequazioni Si risolvono entrambe le disequazioni utilizzando la stessa retta reale Si considera solo gli intervalli che soddisfano entrambe le disequazioni Esempio R -3-4

9 Disequazione di grado >2 e disequazioni fratte Si scompongono in fattori in modo che i fattori siano di 1° o secondo grado Si studia la positività di ogni fattore in un unico asse reale Considerando che il prodotto tra fattori concordi è positivo e tra fattori discordi negativo si studia il segno dellintero polinonio e quindi si verifica quando è in accordo col verso della disequazione R °fatt.num 2°fatt.num Denom


Scaricare ppt "DISEQUAZIONI Una disequazione è una relazione tra 2 membri in cui compaiano in almeno uno di essi delle incognite e tra di loro uno dei seguenti segni."

Presentazioni simili


Annunci Google