La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Analisi e gestione del rischio Lezione 15 Tecniche di valutazione di CDO.

Presentazioni simili


Presentazione sul tema: "Analisi e gestione del rischio Lezione 15 Tecniche di valutazione di CDO."— Transcript della presentazione:

1 Analisi e gestione del rischio Lezione 15 Tecniche di valutazione di CDO

2 Valutazione di tranche equity Il valore di tranche equity è rappresentato da opzioni put. Dalla parità put-call EL + Equity = K + Call Se assumiamo che le perdite abbiano una distribuzione lognormale Equity(K) = K – EL + E(L) N(d + s) – KN(d) = – EL(1 – N(d + s)) + K(1 – N(d )) = – EL(N(– d – s)) + K (N(– d)) che ricorda la formula di Black e Scholes

3 Tranche equity e senior Come nei modelli strutturali, tutte le tranche sono influenzate nella stessa direzione da cambiamenti di valore dellattivo. Laumento delle perdite penalizza tutte le tranche. Le tranche equity sono inoltre avvantaggiate da aumenti della volatilità, mentre il valore delle tranche senior sono avvantaggiate da riduzioni della volatilità. Poiché lattivo è rappresentato da portafogli il parametro rilevante è la correlazione più che la volatilità.

4 MC simulation pn a basket of 100 names Default Probability Correlation 95% Correlation 20% Correlation 0%

5

6 Copula gaussiana e correlazione implicita La tecnica standard di valutazione utilizzata sul mercato è basata sulla copula gaussiana C(u 1, u 2,…, u N ) = N(N – 1 (u 1 ), N – 1 (u 2 ), …, N – 1 (u N ); ) dove u i è la probabilità dellevento i T e i è il tempo di default del nome i-esimo. E utilizzata la stessa correlazione per tutta la matrice. Questa correlazione sintetizza di fatto linformazione presente nel prezzo, e per questo viene spesso utilizzata per le quotazioni. Si tratta di quella che è nota sul mercato come correlazione implicita: la correlazione che impiegata nella copula gaussiana restituisce il valore della tranche. Si noti che in generale il valore della tranche non è funzione monotona della correlazione, e il valore di correlazione implicita che può essere ricavato da una tranche può non essere unico.

7 Relazioni di arbitraggio Assumiamo di conoscere la perdita attesa di due tranche equity 0- % e 0- % ( > ) : qual è il prezzo della tranche mezzanina - %? Non è difficile vedere che per escludere possibilità di arbitraggio dobbiamo avere EL(0- %) – EL(0- %) = EL( - %) Si noti che si tratta di una relazione di arbitraggio come quella che determina il prezzo di un call spread.

8 Base correlation/implied correlation Sul mercato è definita base correlation la correlazione delle equity tranche: (0- ) e (0- ). Si noti che le perdite su equity tranche sono monotone nella correlazione e quindi la base correlation ottenuta dal prezzo di una tranche è unica. La correlazione implicita ( - ) (compound implied correlation) è legata alla base correlation dalla relazione di arbitraggio EL( (0- )) – EL( (0- )) = EL( ( - )) La forma della curva della correlazione implicita per diversi livelli di perdita è detta correlation smile

9 Base correlation

10 Copula gaussiana e correlazione implicita La tecnica standard di valutazione utilizzata sul mercato è basata sulla copula gaussiana C(u 1, u 2,…, u N ) = N(N – 1 (u 1 ), N – 1 (u 2 ), …, N – 1 (u N ); ) dove u i è la probabilità dellevento i T e i è il tempo di default del nome i-esimo. E utilizzata la stessa correlazione per tutta la matrice. Questa correlazione sintetizza di fatto linformazione presente nel prezzo, e per questo viene spesso utilizzata per le quotazioni. Si tratta di quella che è nota sul mercato come correlazione implicita: la correlazione che impiegata nella copula gaussiana restituisce il valore della tranche. Si noti che in generale il valore della tranche non è funzione monotona della correlazione, e il valore di correlazione implicita che può essere ricavato da una tranche può non essere unico.

11 Tecniche di valutazione La valutazione di tranche dipende in maniera cruciale dal rischio di credito dei nomi dellattivo della SPV e dalla loro correlazione La prassi di mercato è assumere che la correlazione tra i tempi di default dei vari nomi portafoglio sia la stessa per tutti. Questo è legato allassunzione che essi siano generati da un modello fattoriale nel quale il rischio idiosincratico e sistematico (rappresntato dal fattore M) hanno lo stesso peso per tutti i nomi.

12 Tecniche di valutazione Le tranche possono essere valutate con due strategie alternative Simulazione Monte Carlo della probabilità congiunta di default dei nomi. Integrazione numerica della probabilità di default condizionale dei nomi

13 Simulazione dei tempi di default con le funzioni di copula Generazione di variabili casuali dalla copula Gaussiana di dimensione N 1.Trovare la scomposizione di Cholesky A di R 2.Simulare n variabili casuali indipendenti z = (z 1,..., z n ) da N(0,1) 3.Porre x = Az 4.Porre u i = N(x i ) con i = 1,2,...,n dove N denota la distribuzione normale standard univariata 5.(y 1,...,y n ) =[F 1 -1 (u 1 ),...,F n -1 (u n )] dove F i denota la i- esima distribuzione marginale. Nel caso dei tempi di default abbiamo u i =exp( – i i ) da cui i = – ln(u i )/ i

14 Valutazione Monte Carlo di tranche La valutazione delle tranche è ottenuta 1.Generando tempi di default i come dalla slide precedente 2.Calcolando limpatto delle perdite sul valore del capitale delle diverse tranche (sistema di waterfall) 3.Calcolando il valore dei flussi di capitale e interessi delle diverse tranche con la funzione di sconto appropriata. 4.Ripetendo i passi da 1 a 3 per un numero N di iterazioni 5.Calcolando il valore di ciascuna tranche come la media aritmetica dei valori sugli N scenari

15 Valutazione con la funzone di copula condizionale Un strategia alternativa di valutazione consiste nel condizionare il valore della tranche rispetto al fattore comune M. In questo modo i default dei nomi sono resi independenti e le tranche possono essere valutate di conseguenza. La valutazione è poi ottenuta integrando il valore sui diversi valori del fattore comune M.

16 Valutazione condizionale I Assumiamo di condizionare le probabilità di default degli i = 1, 2, …, N nomi rispetto a un particolare scenario m del fattore M in un modello gaussiano. Denotando p i la probabilità di default entro il tempo T e i la correlazione del nome i-esimo otteniamo la probabilità di default condizionale

17 Valutazione condizionale II Poiché le probabilità di default condizionali sono indipendenti, i default e le perdite L i possono essere modellate utilizzando la funzione generatrice dei momenti di una distribuzione binomiale (Laurent e Gregory)

18 Valutazione non condizionale Una volta che il valore di ogni tranche è calcolato sotto lo scenario M = m la probabiltà non-condizionale di un numero L(i) di default è ottenuta integrando la probabilità condizionale sugli scenari.

19 Valutazione non-condizionale Una volta ottenuta la probabilità di default non condizionale il valore delle tranche è calcolata dalla perdita attesa corrispondente

20 Modello fattoriale gaussiano Assumiamo un modello in cui cè un singolo fattore di rischio alla radice di tutte le perdite. La struttura di dipendenza è gaussiana. In termini di probabilità condizionale dove M è il fattore comune e m è uno scenario particolare.

21 Modello di Vasicek Vasicek propose un modello in cui un numero molto grande di esposizioni ha la stessa probabilità di default e la stessa dipendenza dal fattore comune Probabilità di una percentuale di perdite L d :

22 Il valore delle tranche Il valore medio della distribuzione è p, il valore è la probabilità di default di ogni individuo Il valore della tranche equity con detachment L d è Equity(L d ) = (L d – N(N -1 (p); N -1 (L d );sqr(1 – 2 )) Il valore della tranche senior tranche con attachment L d è Senior(L d ) = (p – N(N -1 (p); N -1 (L d );sqr(1 – 2 )) dove N(N -1 (u); N -1 (v); ) è la copula gaussiana.

23 Copertura delle tranche Le tranche di un CDO non-standard (bespoke CDO) possono essere coperte –con gli indici di credito (iTraxx, CDX) –con altre tranche Il mistero di maggio-giugno 2005 –Posizioni lunghe in equity coperte con il mezzanino detenute dai fondi furono vanificate da un improvviso crollo della correlazione


Scaricare ppt "Analisi e gestione del rischio Lezione 15 Tecniche di valutazione di CDO."

Presentazioni simili


Annunci Google