La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

IL GIOCO DELLA LOGICA IL GIOCO DELLA LOGICA. OVVERO Come la logica aristotelica può esser trasformata in un gioco semplice e affascinante.

Presentazioni simili


Presentazione sul tema: "IL GIOCO DELLA LOGICA IL GIOCO DELLA LOGICA. OVVERO Come la logica aristotelica può esser trasformata in un gioco semplice e affascinante."— Transcript della presentazione:

1 IL GIOCO DELLA LOGICA IL GIOCO DELLA LOGICA

2 OVVERO Come la logica aristotelica può esser trasformata in un gioco semplice e affascinante

3 Di Alessia Longo Laura Pizzicaroli Alice Schirone

4 Numero di giocatori: ALMENO UNO!

5 Proposizioni Alcune torte fresche sono dolci Nessuna torta fresca è dolce Tutte le torte fresche sono dolci

6 Proposizione Un enunciato che asserisce che alcuni, o nessuno, o tutti gli oggetti appartenenti ad una certa classe, detta soggetto dellenunciato, sono anche oggetti appartenenti ad una certa altra classe, detta predicato dellenunciato.

7 Consideriamo il diagramma seguente e supponiamo che esso sia una dispensa progettata per tutte le torte del mondo

8 Supponiamo che le torte fresche siano state collocate nella metà superiore e le rimanenti (cioè quelle non-fresche) nella metà inferiore Torte fresche Torte non- fresche

9 Supponiamo inoltre che tutte le torte dolci siano state collocate nella metà di sinistra e le rimenenti (cioè quelle non-dolci) nella metà a destra Torte dolci Torte non-dolci Torte dolci Torte non-dolci

10 A questo punto possiamo dedurre che, se il settore in alto a sinistra contiene delle torte, esse dovranno avere il duplice attributo di fresche e dolci Fresche e dolci

11 Ora stabiliamo: 1.che il numero 1 in un settore indichi che è occupato, cioè che in esso ci sono alcune torte. 2.che il numero 0 in un settore indichi che tale settore è vuoto, cioè che in esso non vi sono torte.

12 Fissando lattenzione sulla metà superiore della dispensa, in cui tutte le torte hanno lattributo fresco, la prima proposizione proposta alcune torte fresche sono dolci viene allora ad essere così rappresentata: 1

13 DUE PRECISAZIONI: La parola alcuni/e in logica significa uno o più Chiamiamo lintera classe degli oggetti a cui è destinata la dispensa luniverso Naturalmente qualsiasi altro oggetto andrebbe bene proprio come le torte!

14 Che significato hanno, allora, i seguenti diagrammi superiori? Alcune torte fresche sono dolci 2.Alcune torte fresche sono non-dolci

15 …E questi? Nessuna torta fresca è dolce (SECONDA PROPOSIZIONE) 2.Nessuna torta fresca è non-dolce

16 …E questi altri? Alcune torte fresche sono dolci, e alcune sono non-dolci 2.Nessuna torta fresca è dolce, e nessuna è non-dolce, ovvero nessuna torta fresca esiste, ovvero nessuna torta è fresca!

17 Si tratta di PROPOSIZIONI DOPPIE, come le seguenti: Alcune torte fresche sono dolci, e nessuna torta fresca è non-dolce. Quindi: Tutte le torte fresche sono dolci (TERZA PROPOSIZIONE) 2.Tutte le torte fresche sono non- dolci

18 Divisioni ESAUSTIVE Suddivisioni che tra loro esauriscono lintera classe

19 Consideriamo ora il diagramma seguente: possiamo considerarlo come una dispensa divisa nello stesso modo della precedente, ma divisa ulteriormente in due zone relative allattributo mangiabile

20 Supponiamo che tutte le torte mangiabili siano poste dentro il quadrato centrale, mentre tutte quelle immangiabili fuori, cioè in uno dei quattro settori esterni di forma irregolare

21 Vediamo che, come nel diagramma minore le torte in ciascun settore avevano due attributi, così qui le torte contenute in ciascun settore hanno tre attributi

22 Ora consideriamo solamente la metà superiore della dispensa: il soggetto è torte fresche. La proposizione Nessuna torta fresca è mangiabile sarà allora rappresentata in questo modo: 0 0

23 Esaminiamo ora Tutte le torte fresche sono mangiabili. Questa proposizione consiste, come visto in precedenza, in due proposizioni: Alcune torte fresche sono mangiabili e Nessuna torta fresca è non- mangiabile

24 La proposizione negativa: Nessuna torta fresca è non-mangiabile ci dice che nessuna torta appartenente alla metà superiore della dispensa deve trovarsi al di fuori del quadrato centrale: 0 0

25 La proposizione: Alcune torte fresche sono mangiabili dice che ci sono alcune torte nel rettangolo centrale ma, poiché non sappiamo se si tratta di torte dolci o non- dolci, poniamo l1 sulla linea di divisione: 0 0 1

26 Ora tentiamo una interpretazione: che cosa diciamo di questa figura? Che il quadrato di destra è interamente vuoto, perché entrambi i suoi settori sono segnati con 0 2.E che il quadrato di sinistra è occupato 0

27 Se allora trasferiamo i simboli nel diagramma minore, così da eliminare la sottodivisione mangiabile, lo segnamo correttamente nel seguente modo: 10 Che significa: Tutte le torte fresche sono dolci

28 Ora tentiamo unaltra interpretazione: che cosa diciamo di questa situazione? Che nel quadrato di sinistra uno dei due settori è vuoto, ma tale informazione non serve poiché non cè nessun simbolo nellaltro settore 2.E che il quadrato di destra è occupato

29 Se allora trasferiamo i simboli nel diagramma minore, in questo caso otteniamo semplicemente questo: 1 Che significa: Alcune torte fresche sono non-dolci

30 SILLOGISMI Supponiamo di dividere il nostro universo di oggetti in tre modi rispetto a tre differenti attributi (a, b e c) Se abbiamo due proposizioni contenenti le coppie ab e ac, è possibile dedurre da esse una terza proposizione contenente bc

31 In tal caso chiamiamo le due proposizioni date premesse, la terza conclusione, e il tutto sillogismo Evidentemente uno degli attributi deve trovarsi in entrambe le premesse: termine medio; oppure deve essere in una premessa e il suo contrario nellaltra: termini medi Lattributo che compare nel termine o nei termini medi scompare nella conclusione

32 Cerchiamo ora di trarre una conclusione dalle due premesse: Alcune torte fresche sono immangiabili Nessuna torta dolce è immangiabile

33 Per rappresentarle sul diagramma maggiore dobbiamo dividere le torte in tre modi, rispetto alla freschezza, alla dolcezza e alla mangiabilità. Cominciamo col rappresentare la premessa negativa: Nessuna torta dolce è immangiabile 0 0

34 Resta ora da esprimere laltra premessa, vale a dire: Alcune torte fresche sono immangiabili. Ciò significa che uno dei due settori superiori di forma irregolare è occupato (necessariamente quello dove non è posto lo 0): 0 1 0

35 Ora, come riportare queste informazioni nel diagramma minore, così da ottenere una proposizione che contenga soltanto gli attributi dolce e fresco, tralasciando mangiabile? Il risultato è: Alcune torte fresche sono non-dolci 1

36 Trascriviamo allora lintero sillogismo Alcune torte fresche sono immangiabili Nessuna torta dolce è immangiabile QUINDI Alcune torte fresche sono non-dolci


Scaricare ppt "IL GIOCO DELLA LOGICA IL GIOCO DELLA LOGICA. OVVERO Come la logica aristotelica può esser trasformata in un gioco semplice e affascinante."

Presentazioni simili


Annunci Google