La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

CERN, 7 Settembre 2005 Conference room 40-R-B10 09:30 Iacopini:Introduzione 10:30 Fantechi Status report Veto 11:00 Valente Test Beam svolto ai LNF, stato.

Presentazioni simili


Presentazione sul tema: "CERN, 7 Settembre 2005 Conference room 40-R-B10 09:30 Iacopini:Introduzione 10:30 Fantechi Status report Veto 11:00 Valente Test Beam svolto ai LNF, stato."— Transcript della presentazione:

1 CERN, 7 Settembre 2005 Conference room 40-R-B10 09:30 Iacopini:Introduzione 10:30 Fantechi Status report Veto 11:00 Valente Test Beam svolto ai LNF, stato simulazioni, ripartizione attivita' tra le Sez. Interessate 11:40 Piccini Odoscopio 12:10 Scarpa Gigatracker 12:40 Pranzo 14:00 Illustrazione richieste 2006

2 s d E. Iacopini, 7 Sett. 05

3 Nota scritta Si Ke3 pubblicato Kmu3 in progress 90%Presentato in CSN1 80% OK OK

4

5 Ferrara: Ferrara: Dottorando: Massimiliano Fiorini, da Marzo 2003 a Febbraio- Marzo Proseguirà con un assegno PRIN2005. Assegnisti: Marcella Scarpa, che finisce con il 2005 Chiara Damiani, che continuerà lattività con un nuovo assegno da Marzo Firenze: Francesca Bucci, assegnista dal 1/7/05, per 2 anni Napoli: 1 assegnista al 50 % (scadenza contratto Febbraio 2007) LNF: al momento, nessuno. Perugia: Raggi termina la borsa di dottorato nell'ottobre Imbergamo, dottorando senza borsa, conclude il dottorato nel 2005 come Raggi. Ha un assegno di ricerca fino a settembre. Piccini, assegnista INFN, ha iniziato il suo assegno di ricerca nel maggio 2005 e nel 2006 avrà il prolungamento al secondo anno

6 Pisa: Dottorandi: Lamanna e Venditti Il Lamanna si addottorera' entro la fine dell' anno e avràsubito un assegno. Poi ci sono Sergio e Gianmaria assegnisti SNS, entrambi in scadenza fine 2006, ma Sergio ha gia' avuto un rinnovo Roma1: al momento, nessuno. Torino: Dottorandi: Silvia Goy Lopez e' al secondo anno, Simone Bifani e' al primo anno

7

8 Proposal submitted to SPSC on June 11, 2005: We propose to measure the very rare decay K + + at the CERN SPS to make a decisive test of the Standard Model by extracting a 10% measurement of the CKM parameter |V td |. The open presentation to the SPSC is scheduled on September 27, 2005 A. Ceccucci August Cambridge

9 Recent developments in the rare kaon decay community A few months ago the Fermilab Directorate endorsed the PAC recommendation not to pursue K + + at the Main Injector The physics of K + + was considered very important but a potential conflict for protons between the kaon and the neutrino possible programmes at Fermilab lead to this recommendation Very Recently the RSVP program was terminated: –The to e conversion experiment (MECO) and the K 0 experiment, ready to start construction at BNL, will not be built This leaves CERN and Japan (JPARC) as the only places where an ultra-rare kaon decay experiments are currently envisaged However, to be completely fair, one should also mention: –Plans at Protvino as mentioned at KAON2005 –Plans at Frascati to study K S at an upgraded phi factory A. Ceccucci August Cambridge

10 Strengthening P326 The demise of the US kaon program has triggered negotiations with members of KOPIO/CKM to join P326 The following groups have signed up since the proposal submission: –S Louis Potosi (Mexico, J. Engelfried) –Bolotovs group (Moscow, INR) Interest to join has been expressed by the following groups: –Fermilab (P. Cooper) –BNL (L. Littenberg) –British Columbia (D. Bryman) It is my understanding that a possible participation of US groups is subject to: –DOE support towards a strong contribution to the construction of the detector (notably the RICH counter) –The involvement of US University in addition to National Labs (at least for BNL) A. Ceccucci August Cambridge

11 Endorsement of P326 R&D by SPSC From the draft minutes of the July 05 meeting: "The SPSC considers it important that an R&D programme continues concerned with the possibility of an experiment to measure the rare decay K + + " A. Ceccucci August Cambridge

12 CERN Program and Plans introduction to Round Table discussion on The Future of High Energy Physics ECFA-EPS Joint Session at HEPP-EPS 2005 International Europhysics Conference on High Energy Physics Lisbon, July , 2005 Jos Engelen CERN

13 From Medium Term Plan, CERN/2615 Will determine the future course of high energy physics Detector completion/upgrade/in particular for luminosity upgrade ( ) (~2014); requires R&D, machine and detectors Very limited neutrino programme (in scope) New initiatives include K + + ; why not K 0 0..? New initiatives may include a long term neutrino programme CERN working groups Proton Accelerators for the Future (PAF) and Physics Opportunities at Future Proton Accelerators (POFPA) New initiatives to appear in Budget Plan from 2006 (or maybe 2007) onwards Accelerator R&D includes EU funded networks, joint projects, design studies Linear colliders: Eurotev (generic) and CLIC (CERN and partners, collaboration, feasibility proof by 2009) EURISOL Design Study (including beta beams) No fully-fledged Neutrino Factory Design Study yet (2008 if EU support)

14

15 Choice of K + momentum : (for 400 GeV/c proton momentum)

16 (2 RMS)

17

18 800 MHz ( /K/p) Solo i rivelatori upstream sono esposti a 800 MHz di fascio (8.6% K) … 10 MHz Kaon decays K+K

19 Muon Halo Rates (simulated):

20

21

22

23

24

25 G. Ruggiero 1 Sett Cambridge

26 Background kinematically constrained DecayBR K ( 0 0 ) % of total background + 0 forces us to split the signal region G. Ruggiero 9/1/2005 Cambridge

27 Background not kinematically constrained Decay BR K e K K 2 K 2 5.5× ×10 -3 K e4 4×10 -5 K 4 1× % of total background Spoils the signal region

28 Background rejection Goal of P326: S/B 10 ~10 12 rejection 2-steps background rejection: 1) Kinematical rejection Region I: 0 < m 2 miss < 0.01 GeV 2 /c 4 Against K 2, + 0 Region II: < m 2 miss < GeV 2 /c 4 Against + 0, + +, ) Veto and Particle ID,, charged particles – e separation G. Ruggiero 9/1/2005 Cambridge

29 Sources of background Kinematical rejection inefficiency Resolution effects Non gaussian tails Beam pile – up Veto and particle ID inefficiency RICH – veto Simulation (Jurgen) Simulation (Oleg) Parameterization (Simulation in progress by Rome) (Data in progress: LKr by NA48/2, ANTI by Frascati) Simulated using Flyo Simulated using GEANT4 Simulated using Flyo

30 Resolutions (Flyo MC) Gigatracker 300 x 300 m pixels 0.4% X0 per Spibes Simple reconstruction 2% inefficiency per station Double Spectrometer 80 m resolution in X and Y hits (125 m per view) 0.5% X0 per chamber Track momentum from fit Angle from first 2 chambers Fully efficient + 0 m 2 miss resolution PKPK K P track K Results: (P K )/P K = 4.2 x ( K ) = 16.7 rad (P )/P = 0.23% % P (GeV/c) ( K ) = 60 – 20 rad (P = 10 – 50 GeV/c)

31 Not gaussian tails (GEANT4) Simulation: Toy simulation of the Double Spectrometer, based on GEANT4 Interactions: Electromagnetic, Hadronic Reconstruction: Average material 0.5% X0 (no straws geometry) -ray production allowed No digitization, coordinates smeared with gaussians Effects: Tails in the reconstructed momentum and angle: smearing of the m 2 miss Spoiling of the rejection power for the kinematical constrained background GeV/c Approximation: Non gaussian effects in the Gigatracker not taken into account

32 Beam pile-up (Flyo) Simulation: Accidental track superimposed in Gigatracker to the kaon track Accidental track generated according to the beam momentum bite, dimension and divergence Rate: 800 MHz SPIBES: time resolution 200 ps, inefficiency 2% HODOSCOPE: time resolution 80 ps Effect: The downstream track can be matched with the wrong track: danger expecially for Analysis: Only upstream tracks within 500 ps from the downstream track are considered good upstream tracks: 32% of events have >1 good track in Giga Track choice based on 2 from T and CDA About 1.7% of events matches the wrong track

33 Veto and particle ID RICH (Simulation by Jurgen): 17 m long, 1.0 atm Ne – Veto (Simulation by Oleg): -veto = 10 5 E rangeInefficiency ANTI < 50 MeV1 (0.5, 1) GeV10 4 > 1 GeV10 5 LKR < 1 GeV1 (1,3) GeV10 4 (3,5) GeV > 5 GeV10 5 IRCs, SAC All10 6 – Veto: inefficiency parameterization JURGEN

34 Selection (1) Number of tracks 1 positive downstream track (hit in all the 6 chambers) Choice of the upstream track using minimum 2 (prev. slide) Detector geometry Downstream track inside of the detector acceptance: Straws: 10 cm < R track < 85 cm (centered on the hole of the chamber) RICH: 12 cm < R track < 120 cm (both on front and back surfaces) LKr: Octagonal outer shape and R track > 15 cm MAMUD: square shape, 260x260 cm outer, 36x30 cm inner (front and back) Particle ID Not muons in RICH or MAMUD Not electrons in RICH or LKr (LKr with inefficiency of e – ID)

35 Selection (2) Fiducial decay region 5 m < Z vertex < 65 m (from the final collimator, Z vertex defined as the Z coordinate of the point closest to both the tracks) Specific cuts P track /P track < 2.5× (P)/P (against the not gaussian tails) CDA < 0.8 cm (against the tails from the beam pile – up) Kinematics REGION I: 0 < m 2 miss < 0.01 GeV 2 /c 4 REGION II: < m 2 miss < GeV 2 /c4 Cut on momentum 15 GeV/c < P track < 35 GeV/c

36 Some remarks Fiducial decay region: 60 m (5m < Z vertex < 65 m) Kaon Flux: 4.8×10 12 decay/year in the fiducial region Detector Layout described in the proposal: Straw chambers 5cm inner radius displaced in x according to the positive beam deflection in the spectrometer Magnets of the double spectrometer: MNP33 – 1 P t kick = 270 MeV/c MNP P t kick = -360 MeV/c All the expected background given per 1 year of data taking

37 + 0 Acceptance after all the cuts: Acc = (1.3 ± 0.1) × 10 4 Assumption: independence between kinematical rejection inefficiency ( kin ) and selection acceptance N I,II = kin ×N sel (Flyo)+N pileup (Flyo) N I,II = Number of expected events in regions I and II after all the cuts N sel (Flyo) = number of events selected in Flyo before the cut on m 2 miss N pileup (Flyo) = number of events in Regions I and II due to the beam pileup Acc = N I,II / N gen (Flyo) Expected events: N( + 0 ) = kaon × BR × Acc × ( 0 ) = (2.7 ± 0.2) / year – – Region I: 1.7 / year – – Region II: 1.0 / year – – N ngaus ~ 0.5 / year, N pileup ~ 2.2 / year Photon veto inefficiency: ( 0 ) = 2 × 10 8

38 Acceptance after all the cuts: Acc=(8 ± 2) × 10 6 Same procedure as for + 0 to extract the acceptance Expected events: N(K 2 ) = kaon × BR × Acc × Rich ( ) × MAMUD ( ) = (1.2 ± 0.3) / year – – Region I: 1.1 / year – – Region II: <0.1 / year – – N ngaus ~ 0.4 / year, N pileup ~ 0.8 / year Muon veto inefficiency: MAMUD ( ) = 10 5 (MAMUD) RICH ( ) = 5 × 10 3 (RICH) (conservative) Assumption: MAMUD and RICH rejection inefficiencies independent

39 Two body background vs Spibes performances K Total Spibes ineff (t) Spibes ns 2 body background events

40 Other backgrounds Ke3: Acceptance ~12% (Flyo) 0 ~ 3×10 8 Positron ID: LKr × RICH < 10 3 × 10 3 (conservative) NEGLIGIBLE K 3: Acceptance ~17% (Flyo) 0 ~ 3×10 8 Muon ID: RICH × MAMUD < 10 5 × 10 2 (conservative) NEGLIGIBLE : High suppression from kinematics and veto NEGLIGIBLE

41 G. Ruggiero 9/1/2005 Cambridge

42 Signal Acceptance Selection applied on events generated with FF (from CMC) Effects not taken into account: Random veto Accidental loss due to hit multiplicity cuts Straw inefficiency Loss due to cuts in MAMUD for muon ID BR( + )=8×10 11 (SM)

43 Signal Acceptance Results REGION I: (4.10 ± 0.03) × REGION II: (12.88 ± 0.05) × Total: (16.98 ± 0.06) × Acceptance normalized in the region: 5 m < Z vertex < 65 m Most important cuts N track =1: cuts 8% of events Geometry: cuts 10% of events Momentum: cuts 50% of events Pile – Up: cuts 12% of events

44 Signal and backgrounds / year TotalRegion IRegion II Signal~65~16~ ±0.21.7±0.21.0±0.1 K 2 1.2±0.31.1±0.3<0.1 K e4 2±2negligible2±2 + + and 3-tracks 1±1negligible1± ±0.4negligible1.3±0.4 K 2 0.4±0.10.2±0.1 K e3, K 3,others negligible Total bkg9±33.0±0.26±3

45 Results: S/B S/B (Total) = 7.6 ± 2.0 S/B (Region I) = 5.2 ± 1.1 S/B (Region II) = 8.9 ± 3.6 Some S/B dependence on detector parameters uncorrelated errors 80 ns200 ns2% Hodo time resolutionSpibes time resolutionSpibes inefficiency

46

47 Tentative sharing of construction responsibility (sept. 05) Beam Line (CERN) CEDAR (CERN) GIGATRACKER (CERN, INFN, Saclay [kabes]) VACUUM TANK (Common fund) ANTI Counters (INFN) STRAW TRACKER (DUBNA, MAINZ) MNP33/2 (Common Fund) CHOD (INFN) RICH (US? + Mexico) LKR (CERN+INFN) MAMUD (INR+Protvino) SAC + IRC (Sofia) Trigger & DAQ (CERN+INFN+?) A. Ceccucci August Cambridge

48 ElementCost (MCHF)Comments BEAM LINE0.4Modified K12 line CEDAR0.5Replacement of photon detectors GIGATRACKER2.7 (1.4) Assuming 0.13 m CMOS technology VACUUM1.0Addition of 20 large diffusion pumps ANTI4.2 (4.2)CKM estimate + 40% for the electronics STRAW TRACKER2.46 straw chambers MNP33/22.5( prolongation of He tank) CHOD0.9 (0.9)MGG-RPC LKR2.0 !!!New supervision system and R/O RICH4.0Indication MAMUD1.5Cost of iron 0.5 MCHF SAC, IRC1 & IRC20.4Shashlik or PbWO 4 Trigger & DAQ1.5 (0.7)L0 HW, L1 SW TOTAL24.0 (7.2)

49 Gigatracker M (assumendo 50% sharing) Anticounters M Chod 0.5–0.7 M Trigger M (assumendo 40% sharing) TOTALE M (Nella proposta sono quotati 7.2 MCHF = 4.8 M )

50 Il 27 settembre, verrà presentata allSPSC una richiesta di 30 gg di run per il 2006 sulla solita linea di fascio K12 principalmente per - misurare linefficienza di osservazione dei fotoni con il LKr - misurare linefficienza di osservazione dei fotoni con il LKr - misurare il BKGR da pi/k interagenti con il gas residuo - misurare il BKGR da pi/k interagenti con il gas residuo - determinare l' alone del fascio - determinare l' alone del fascio - effettuare i tests necessari sui prototipi dei nuovi rivelatori - effettuare i tests necessari sui prototipi dei nuovi rivelatori (Cedar, hodo, sensori gigatracker …) (Cedar, hodo, sensori gigatracker …)

51 Nella riunione di Cambridge, lo Steering Committee ha definito in 93.5 kCHF il Common Fund 2006 di NA48/2. Sulla base del MoU esistente, questo significherebbe 93.5*0.3 = KCHF 19. Keuro (1euro=1.5CHF) Common Fund 2006 Richiesti nei moduli 15k

52 Nella riunione di Cambridge, lo Steering Committee ha definito in kCHF le spese da sostenere in comune per il run 2006, relativo allR&D di P326. Nellipotesi di 1/3 a carico INFN, questo significa 165.5/3 = 55.2 KCHF 37.0 Keuro (1euro=1.5CHF) P326 Run Operating expenditures in 2006 Richiesti nei moduli 20k + 20k (Pool) = 40k

53 P326 Run Operating expenditures in 2006: details Estimated running expenses (KCHF): EPOOL Rentals 12.5 EPOOL rentals for equipment carried over from Austria, UK, Siegen 50 Gas 20 Data Storage (CASTOR) 50 Store 10 Maintenance of Fastbus power supplies 20 Water/Cooling and Ventilation provided by CERN Liquid Nitrogen provided by CERN Total running expenses: Consolidation expenditure Consolidation of LKr control system 500 over 2 years Programmer for LKr control system 1 person for 3 years

54 Il sistema attuale è obsoleto e non più supportato e richiede già da tempo la sua sostituzione, anche perchè la persona che, comunque, lo conosceva, è ormai in pensione da tempo. Abbiamo rimandato fino a che è stato possibile, ma ormai loperazione è divenuta improcrastinabile improcrastinabile per ragioni di sicurezza dellapparato. Per passare al nuovo sistema supportato al CERN per LHC, il costo Previsto (hardware + man-power) è di 500 kCHF. Date le ristrettezze finanziarie comuni, vorremmo comunque cercare di sbloccare la situazione, attraverso un finanziamento straordinario ad hoc dellINFN di 150 k.

55

56 SPARES

57


Scaricare ppt "CERN, 7 Settembre 2005 Conference room 40-R-B10 09:30 Iacopini:Introduzione 10:30 Fantechi Status report Veto 11:00 Valente Test Beam svolto ai LNF, stato."

Presentazioni simili


Annunci Google