La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

1 ESERCITAZIONE di CHIMICA 9 novembre 2012 GAS e PRESSIONI PARZIALI EQUILIBRIO CHIMICO VELOCITÀ DI REAZIONE.

Presentazioni simili


Presentazione sul tema: "1 ESERCITAZIONE di CHIMICA 9 novembre 2012 GAS e PRESSIONI PARZIALI EQUILIBRIO CHIMICO VELOCITÀ DI REAZIONE."— Transcript della presentazione:

1 1 ESERCITAZIONE di CHIMICA 9 novembre 2012 GAS e PRESSIONI PARZIALI EQUILIBRIO CHIMICO VELOCITÀ DI REAZIONE

2 2 GAS e PRESSIONI PARZIALI

3 3 In una miscela gassosa ciascun gas esercita una pressione propria detta pressione parziale p i x V = n i x R x T P totale x V = n totale x R x T P totale = p 1 + p 2 + p p i = i p i n totale = n 1 + n 2 + n n i = i n i

4 4 PRESSIONI PARZIALI E MOLARITÀ In una miscela gassosa la pressione parziale di ciascun gas è proporzionale alla sua concentrazione: p i x V = n i x R x T n i x R x T n i p i = = --- x R x T = M i x R x T V V

5 5 1 Un recipiente del volume di 15 L contiene: 0,1 mol di ossigeno 0,25 mol di azoto 0,3 mol di elio 0,2 mol di metano Calcolare le pressioni parziali e la pressione totale a 27 °C

6 6 2 pO 2 = (nO 2 / V) x R x T = (0,1 / 15) x 0,082 x 300 = 0,16 atm pN 2 = (nN 2 / V) x R x T = (0,25 / 15) x 0,082 x 300 = 0,41 atm pHe = (nHe / V) x R x T = (0,3 / 15) x 0,082 x 300 = 0,49 atm pCH 4 = (nCH 4 / V) x R x T = (0,2 / 15) x 0,082 x 300 = 0,33 atm P totale = pO 2 + pN 2 + pHe + pCH 4 = 1,39 atm moli totali = 0,1 + 0,25 + 0,3 + 0,2 = 0,85 P totale = (0,85 / V) x R x T = 1,39 atm

7 7 1 MISCELE GASSOSE: FRAZIONE MOLARE moli gas (mol) frazione molare X = moli totali (mol)

8 8 2 PRESSIONI PARZIALI E FRAZIONE MOLARE In una miscela gassosa ciascun gas esercita una pressione propria detta pressione parziale p i x V = n i x R x T P totale x V = n totale x R x T p i / P totale = n i / n totale p i = P totale x X i

9 9 3 Una miscela gassosa contiene: 5 moli di ossigeno, 7 moli di azoto e 3 moli di elio Sapendo che la pressione totale è di 10 atm, calcolare le pressioni parziali dei tre gas moli totali = = 15 mol pO 2 = 10 x (5 / 15) = 3,3 atm pN 2 = 10 x (7 / 15) = 4,6 atm pHe = 10 x (3 / 15) = 2,0 atm

10 10 EQUILIBRIO CHIMICO

11 11 1 Reazione generica alla temperatura T: a A + b B c C + d D [ C ] c x [ D ] d quoziente di reazione Q = (valore variabile!) [ A ] a x [ B ] b

12 12 2 Reazione generica alla temperatura T: a A + b B c C + d D Allequilibrio: [ C ] c eq x [ D ] d eq Q = kc = [ A ] a eq x [ B ] b eq kc = costante equilibrio alla temperatura T (valore noto!) Il valore di kc dipende solo dalla temperatura!

13 13 Equilibrio in fase gassosa (reagenti e prodotti sono gas!) 3 O 2 (g) 2 O 3 (g) [ O 3 ] 2 eq kc = = 6,2 x a T = 25 °C [ O 2 ] 3 eq Equilibrio fortemente spostato verso il reagente!

14 14 Equilibrio in fase gassosa (reagenti e prodotti sono gas!) CO (g) + 2 H 2 (g) CH 3 OH (g) [ CH 3 OH ] eq kc = = 290 a T = 700 K [ CO ] x [ H 2 ] 2 eq Equilibrio spostato verso il prodotto!

15 15 Equilibrio in fase mista NH 4 Cl (s) NH 3 (g) + HCl (g) [ NH 3 ] eq x [ HCl ] eq kc = = [ NH 3 ] eq x [ HCl ] eq [ NH 4 Cl ] eq La concentrazione delle sostanze pure solide o liquide è costante e ricompresa nel valore di kc!

16 16 Equilibrio in fase mista CaCO 3 (s) CaO (s) + CO 2 (g) [ CaO ] eq x [ CO 2 ] eq kc = = [ CO 2 ] eq [ CaCO 3 ] eq La concentrazione delle sostanze pure solide o liquide è costante e ricompresa nel valore di kc!

17 17 Calcolare la molarità dellacqua pura a 4 °C massa specifica acqua = g / L massa molare acqua = 18 g / mol molarità acqua = / 18 = 55,55 mol / L La molarità dellacqua a 4 °C è un numero costante!

18 18 Equilibrio in soluzione (reagenti e prodotti sono in soluzione) CH 3 COOH (aq) + H 2 O (l) H 3 O + (aq) + CH 3 COO - (aq) [ H 3 O + ] eq x [ CH 3 COO - ] eq [ H 3 O + ] eq x [ CH 3 COO - ] eq kc = = [ CH 3 COOH ] eq x [ H 2 O ] eq [ CH 3 COOH ] eq La concentrazione delle sostanze pure solide o liquide è costante e ricompresa nel valore di kc!

19 19 A + B C kc = 20 Alla temperatura T il quoziente di reazione Q = 200 Allequilibrio, la concentrazione di C è: minore, maggiore, non varia, aumenta di 10 volte [ C ] [ C ] eq Q = = 200 kc = = 20 [ A ] x [ B ] [ A ] eq x [ B ] eq

20 A + B C + D kc = 4 Nelle condizioni iniziali si hanno le seguenti concentrazioni: [ A ] = 1 M [ B ] = 1 M [ C ] = 0 [ D ] = 0 Quale sarà la concentrazione allequilibrio di C? 0,25 M 0,58 M 0,75 M 0,66 M

21 iniziali A+BC+D equilibrio 1 - x 1 - x x x [ C ] eq x [ D ] eq x 2 x kc = = = = 2 [ A ] eq x [ B ] eq (1 - x) x x = 0,66 mol /L[ C ] eq = 0,66 mol / L

22 Un campione di 18,4 grammi di N 2 O 4 gassoso è racchiuso in un recipiente del volume di 5 L ad una data temperatura Il composto si dissocia secondo la reazione: N 2 O 4 (g) 2 NO 2 (g) Sapendo che allequilibrio il 40% dellN 2 O 4 si è dissociato, calcolare il valore della kc

23 23 2 massa molare N 2 O 4 = 92 g / mol moli iniziali N 2 O 4 = 18,4 / 92 = 0,2 mol moli iniziali 0,2 0 N 2 O 4 (g) 2 NO 2 (g) moli equilibrio 0,2 - x 2 x moli dissociate N 2 O 4 = 0,2 x 0,40 = 0,08 mol x = 0,08 moli equilibrio N 2 O 4 = 0,2 - 0,08 = 0,12 mol moli equilibrio NO 2 = 0,08 x 2 = 0,16 mol

24 24 3 moli iniziali 0,2 0 N 2 O 4 (g) 2 NO 2 (g) moli equilibrio 0,12 0,16 Volume = 5 L [ NO 2 ] 2 eq (0,032) 2 kc = = = 0,043 N 2 O 4 ] eq 0,024 compostomolimol / L N2O4N2O4 0,120,12 / 5 = 0,24 NO 2 0,160,16 / 5 = 0,032

25 Un campione di 3,4 grammi di NH 3 gassosa è racchiuso in un recipiente del volume di 1 L ad una data temperatura Il composto si dissocia secondo la reazione: 2 NH 3 (g) N 2(g) + 3 H 2 (g) Sapendo che allequilibrio il 30% di NH 3 si è dissociato, calcolare il valore della kc

26 26 2 massa molare NH 3 = 17 g / mol moli iniziali NH 3 = 3,4 / 17 = 0,2 mol moli iniziali 0, NH 3 (g) N 2 (g) + 3 H 2 (g) moli equilibrio 0,2 - x x/2 3/2 x moli dissociate NH 3 = 0,2 x 0,30 = 0,06 mol x = 0,06 moli equilibrio NH 3 = 0,2 - 0,06 = 0,14 mol moli equilibrio N 2 = 0,06 x (1/2) = 0,03 mol moli equilibrio H 2 = 0,06 x (3/2) = 0,09 mol

27 27 3 moli iniziali 0, NH 3 (g) N 2 (g) + 3 H 2 (g) moli equilibrio 0,14 0,03 0,09 Volume = 1 L [ N 2 ] eq x [ H 2 ] 3 eq 0,03 x (0,09) 3 kc = = = 1,11 x [ NH 3 ] 2 eq (0,14) 2 compostomolimol / L NH 3 0,140,14 / 1 = 0,14 N2N2 0,030,03 / 1 = 0,03 H2H2 0,090,09 / 1 = 0,09

28 28 EQUILIBRIO CHIMICO e CALORE

29 29 Reazioni esotermiche: producono calore Q, cioè cedono Q allambiente Reazioni endotermiche: richiedono calore Q, cioè sottraggono Q allambiente Q va considerato come un reagente o un prodotto! Q + A + B C + D (endotermica) A + B C + D + Q (esotermica)

30 Si consideri la reazione allequilibrio: A + B C + D Sapendo che un aumento della temperatura porta ad un aumento dei prodotti, si deduce che la reazione è: endotermica esotermica endotermica solo se prodotti e reagenti sono gassosi esotermica solo se è un equilibrio eterogeneo

31 Data la reazione (endotermica) allequilibrio: Q + H 2 (g) + I 2 (g) 2 HI (g) Lequilibrio si sposterà a sinistra se cè un aumento di: temperatura concentrazione di I 2 (g) concentrazione di HI (g) volume del contenitore della reazione

32 In un recipiente del volume di 10 litri posto a 500 K sono state immesse 4 moli di I 2 gassoso e 4 moli di H 2 gassoso (kc = 62,5) Calcolare le concentrazioni dei reagenti e dei prodotti allequilibrio, le loro pressioni parziali e quella totale H 2 (g) + I 2 (g) 2 HI (g)

33 33 2 moli iniziali44 0 H 2 (g) + I 2 (g) 2 HI (g) moli equilibrio4 - x 4 - x2 x Volume = 10 L (2 x) [ HI ] 2 eq 10 2 (2 x) 2 kc = = = = 62,5 [ H 2 ] eq x [ I 2 ] eq (4 - x) 2 (4 - x)

34 34 3 moli iniziali44 0 H 2 (g) + I 2 (g) 2 HI (g) moli equilibrio4 - x 4 - x2 x (2 x) 2 2 x kc = 62,5 = ,9 = x = 3,2 (4 - x) x

35 35 4 moli iniziali44 0 H 2 (g) + I 2 (g) 2 HI (g) moli equilibrio4 - x 4 - x2 x x = 3,2 mol Volume = 10 L molimol / Lp, atm H2H2 0,80,083,28 I2I2 0,80,083,28 HI6,40,6426,24 32,8

36 In un recipiente del volume di 15 litri posto a 400 K sono state immesse 2 moli di I 2 gassoso, 2 moli di H 2 gassoso e 4 moli di HI gassoso (kc = 49) Calcolare le concentrazioni dei reagenti e dei prodotti allequilibrio, le loro pressioni parziali e la pressione totale H 2 (g) + I 2 (g) 2 HI (g)

37 37 2 moli iniziali22 4 H 2 (g) + I 2 (g) 2 HI (g) moli equilibrio2 - x 2 - x x Volume = 15 L (4 + 2 x) [ HI ] 2 eq 15 2 (4 + 2 x) 2 kc = = = = 49,0 [ H 2 ] eq x [ I 2 ] eq (2 - x) 2 (2 - x)

38 38 3 moli iniziali22 4 H 2 (g) + I 2 (g) 2 HI (g) moli equilibrio2 - x 2 - x x (4 + 2 x) x kc = 49,0 = ,0 = x = 1,11 (2 - x) x

39 39 4 moli iniziali22 4 H 2 (g) + I 2 (g) 2 HI (g) moli equilibrio2 - x 2 - x x x = 1,11 mol Volume = 15 L molimol / Lp, atm H2H2 0,890,0591,93 I2I2 0,890,0591,93 HI6,220,41513,61 17,47

40 In un recipiente del volume di 1 litro posto a 1000 K sono state immesse 1 mole di A gassoso, 1 mole di B gassoso e 100 moli di C gassoso (kc = 0,01) Calcolare le concentrazioni dei reagenti e dei prodotti allequilibrio A (g) + B (g) 2 C (g)

41 41 2 moli iniziali A (g) + B (g) 2 C (g) moli equilibrio 1 - x 1 - x x Volume = 1 L ( x) [ C ] 2 eq 1 2 ( x) 2 kc = = = = 0,01 [ A ] eq x [ B ] eq (1 - x) 2 (1 - x)

42 42 3 moli iniziali A (g) + B (g) 2 C (g) moli equilibrio1 - x 1 - x x ( x) x kc = 0,01 = ,1 = x = - 47,6 (1 - x) x Lequilibrio si sposta a sinistra!

43 43 4 moli iniziali A (g) + B (g) 2 C (g) moli equilibrio1 - x 1 - x x x = - 47,6 mol Volume = 1 L molimol / L A48,6 B C4,8

44 44 EQUILIBRIO GASSOSO e PRESSIONE

45 45 1 kc e kp Negli equilibri in fase gassosa la costante di equilibrio può essere espressa sia come kc, sia come kp: A (g) + B (g) C (g) + D (g) [ C ] eq x [ D ] eq pC eq x pD eq kc = kp = [ A ] eq x [ B ] eq pA eq x pB eq kc e kp possono essere uguali o differenti!

46 46 2 A (g) + B (g) C (g) + D (g) [ C ] eq x [ D ] eq pC eq x pD eq kc = kp = [ A ] eq x [ B ] eq pA eq x pB eq ([ C ] x R x T) x ([ D ] x R x T) kp = = kc ([ A ] x R x T) x ([ B ] x R x T)

47 47 3 A (g) + B (g) C (g) [ C ] eq pC eq kc = kp = [ A ] eq x [ B ] eq pA eq x pB eq ([ C ] x R x T) kc kp = = ([ A ] x R x T) x ([ B ] x R x T) R x T

48 48 kc uguale a kp Negli equilibri gassosi dove il numero di moli dei reagenti e dei prodotti sono uguali! kc diverso da kp Negli equilibri gassosi dove il numero di moli dei reagenti e dei prodotti sono differenti!

49 49 Negli equilibri con gas, la variazione di pressione totale P può perturbare lo stato di equilibrio, ma NON la kc e la kp che dipendono solo dalla temperatura!

50 50 A (g) + B (g) C (g) + D (g) [ A ] eq = [ B ] eq = [ C ] eq = [ D ] eq = 1 mol / L [ C ] eq x [ D ] eq kc = = 1 [ A ] eq x [ B ] eq Raddoppiando la pressione, il volume si dimezza! [ A ] = [ B ] = [ C ] = [ D ] = 2 mol / L Q = 1 Lequilibrio non si è perturbato!

51 51 A (g) + B (g) C (g) [ A ] eq = [ B ] eq = [ C ] eq = 1 mol / L [ C ] eq kc = = 1 [ A ] eq x [ B ] eq Raddoppiando la pressione, il volume si dimezza! [ A ] = [ B ] = [ C ] = 2 mol / L Q = 0,5 Lequilibrio si sposta a destra!

52 52 Negli equilibri con gas dove il numero di moli dei reagenti e dei prodotti sono differenti la variazione di pressione totale P perturba lequilibrio (non kc e kp!) Lequilibrio si sposta verso destra o verso sinistra per ripristinare laffollamento molecolare precedente

53 53 CO (g) + H 2 O (g) CO 2 (g) + H 2 (g) [ CO 2 ] eq x [ H 2 ] eq pCO 2 eq x pH 2 eq kc = kp = [ CO ] eq x [ H 2 O ] eq pCO eq x pH 2 O eq La pressione totale non influenza lequilibrio!

54 54 PCl 5 (g) PCl 3 (g) + Cl 2 (g) [ PCl 3 ] eq x [ Cl 2 ] eq pPCl 3 eq x pCl 2 eq kc = kp = [ PCl 5 ] eq pCl 5 eq La pressione totale influenza lequilibrio! Aumento di P: spostamento a sinistra Diminuzione di P: spostamento a destra

55 55 2 H 2 (g) + O 2 (g) 2 H 2 O (g) [ H 2 O ] 2 eq pH 2 O 2 eq kc = kp = [ H 2 ] 2 eq x [ O 2 ] eq pH 2 2 eq x pO 2 eq La pressione totale influenza lequilibrio! Aumento di P: spostamento a destra Diminuzione di P: spostamento a sinistra

56 Esprimere la kp relativa allequilibrio: 2 Cr 2 O 3 (s) + 3 C (s) 4 Cr (s) + 3 CO 2 (g) - Q Come viene influenzato lequilibrio da: aumento di temperatura diminuzione della pressione totale P

57 Cr 2 O 3 (s) + 3 C (s) + Q 4 Cr (s) 3 CO 2 (g) kp = (pCO 2 ) 3 Aumento di temperatura: lequilibrio si sposta a destra Diminuzione della pressione totale P: lequilibrio si sposta a destra

58 Esprimere la kp relativa allequilibrio: 2 Fe (s) + 3 H 2 O (l) Fe 2 O 3 (s) 3 H 2 (g) - Q Come viene influenzato lequilibrio da: diminuzione di temperatura aumento della pressione totale P diminuzione della pressione parziale di H 2

59 Fe (s) + 3 H 2 O (l) + Q Fe 2 O 3 (s) 3 H 2 (g) kp = (pH 2 ) 3 Diminuzione di temperatura: lequilibrio si sposta a sinistra Aumento della pressione totale P: lequilibrio si sposta a sinistra Diminuzione pressione parziale H 2 : lequilibrio si sposta a destra

60 60 VELOCITÀ di REAZIONE

61 61 Reazione generica alla temperatura T: a A + b B c C + d D Allequilibrio: [ C ] c eq x [ D ] d eq Q = kc = [ A ] a eq x [ B ] b eq kc = costante equilibrio alla temperatura T (valore noto!) Il valore di kc dipende solo dalla temperatura

62 62 Reazione generica alla temperatura T: a A + b B c C + d D velocità di reazione = kv x [ A ] x x [ B ] y kv = costante di velocità alla temperatura T (valore noto!) Il valore di kv dipende solo dalla temperatura e aumenta con laumentare della temperatura!

63 63 Reazione generica alla temperatura T: a A + b B c C + d D velocità di reazione = kv x [ A ] x x [ B ] y x = ordine di reazione di A (sperimentale!) y = ordine di reazione di B (sperimentale!) x + y = ordine di reazione

64 64 1 H 2 + I 2 2 HI v = kv x [ H 2 ] 1 x [ I 2 ] 1 La reazione è di secondo ordine e di primo ordine rispetto a ciascun reagente Tkv 500 K4,3 x K4,4 x K6,3 x K2,6

65 65 2 H 2 + I 2 2 HI v = kv x [ H 2 ] x x [ I 2 ] y [ H 2 ][ I 2 ]v 0,050,12,15 x ,1 4,3 x ,20,18,6 x La velocità raddoppia al raddoppiare di [ H 2 ]: la reazione è di primo ordine rispetto a H 2

66 66 3 H 2 + I 2 2 HI v = kv x [ H 2 ] 1 x [ I 2 ] y [ H 2 ][ I 2 ]v 0,10,052,15 x ,1 4,3 x ,10,28,6 x La velocità raddoppia al raddoppiare di [ I 2 ]: la reazione è di primo ordine rispetto a I 2

67 67 3 H 2 + I 2 2 HI v = kv x [ H 2 ] 1 x [ I 2 ] 1 La reazione è di secondo ordine e di primo ordine rispetto a ciascun reagente [ H 2 ][ I 2 ]v sperimentale 0,1 4,3 x v 4,3 x kv = = = 4,3 x [ H 2 ] 1 x [ I 2 ] 1 0,1 x 0,1

68 68 1 A + B + C 2 D v = kv x [ A ] x x [ B ] y x [ C ] z [ A ][ B ][ C ]v sperimentale 0,050,1 2 x ,1 4 x ,20,1 8 x La velocità raddoppia al raddoppiare di [ A ]: la reazione è di primo ordine rispetto a A

69 69 2 A + B + C 2 D v = kv x [ A ] 1 x [ B ] y x [ C ] z [ A ][ B ][ C ]v sperimentale 0,10,050,12 x ,1 4 x ,10,20,18 x La velocità raddoppia al raddoppiare di [ B ]: la reazione è di primo ordine rispetto a B

70 70 3 A + B + C 2 D v = kv x [ A ] 1 x [ B ] 1 x [ C ] z [ A ][ B ][ C ]v sperimentale 0,1 0,051 x ,1 4 x ,1 0,216 x La velocità quadrupla al raddoppiare di [ C ]: la reazione è di secondo ordine rispetto a C

71 71 4 A + B + C 2 D v = kv x [ A ] 1 x [ B ] 1 x [ C ] 2 Lordine della reazione è 4 v 4 x kv = = = 40 [ A ] 1 x [ B ] 1 x [ C ] 2 0,1 x 0,1 x (0,1) 2 [ A ][ B ][ C ]v sperimentale 0,1 4 x 10 -3

72 72 1 A + B + C D + E v = kv x [ A ] x x [ B ] y x [ C ] z [ A ][ B ][ C ]v sperimentale 0,050,1 3 x ,1 6 x ,20,1 12 x La velocità raddoppia al raddoppiare di [ A ]: la reazione è di primo ordine rispetto a A

73 73 2 A + B + C D + E v = kv x [ A ] 1 x [ B ] y x [ C ] z [ A ][ B ][ C ]v sperimentale 0,10,050,16 x ,1 6 x ,10,20,16 x La velocità non cambia al raddoppiare di [ B ]: la reazione è di ordine zero rispetto a B

74 74 3 A + B + C D + E v = kv x [ A ] 1 x [ B ] 0 x [ C ] z [ A ][ B ][ C ]v sperimentale 0,1 0,051,5 x ,1 6 x ,1 0,224 x La velocità quadrupla al raddoppiare di [ C ]: la reazione è di secondo ordine rispetto a C

75 75 4 A + B + C D + E v = kv x [ A ] 1 x [ B ] 0 x [ C ] 2 Lordine della reazione è 3 v 6 x kv = = = 6 [ A ] 1 x [ B ] 0 x [ C ] 2 0,1 x 1 x (0,1) 2 [ A ][ B ][ C ]v sperimentale 0,1 6 x 10 -4

76 BrO - (aq) + 5 Br - (aq) + 6 H + (aq) 3 Br H 2 O (l) v = kv x [ BrO - ] x x [ Br - ] y x [ H + ] z [ BrO - ][ Br - ][ H + ]v sperimentale 0,1 1,2 x ,20,1 2,4 x ,10,30,13,6 x ,20,10,155,4 x 10 -3

77 77 2 BrO - (aq) + 5 Br - (aq) + 6 H + (aq) 3 Br H 2 O (l) v = kv x [ BrO - ] 1 x [ Br - ] y x [ H + ] z [ BrO - ][ Br - ][ H + ]v sperimentale 0,1 1,2 x ,20,1 2,4 x ,10,30,13,6 x ,20,10,155,4 x 10 -3

78 78 3 BrO - (aq) + 5 Br - (aq) + 6 H + (aq) 3 Br H 2 O (l) v = kv x [ BrO - ] 1 x [ Br - ] 1 x [ H + ] z [ BrO - ][ Br - ][ H + ]v sperimentale 0,1 1,2 x ,20,1 2,4 x ,10,30,13,6 x ,20,10,155,4 x 10 -3

79 79 4 BrO - (aq) + 5 Br - (aq) + 6 H + (aq) 3 Br H 2 O (l) v = kv x [ BrO - ] 1 x [ Br - ] 1 x [ H + ] 2 [ BrO - ][ Br - ][ H + ]v sperimentale 0,1 1,2 x ,20,1 2,4 x ,10,30,13,6 x ,20,10,155,4 x 10 -3

80 80 FINE !


Scaricare ppt "1 ESERCITAZIONE di CHIMICA 9 novembre 2012 GAS e PRESSIONI PARZIALI EQUILIBRIO CHIMICO VELOCITÀ DI REAZIONE."

Presentazioni simili


Annunci Google