La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Laboratorio di Metodologia Modulo: Metodologie Quantitative Cristina Zogmaister Ricevimento: lu 13-14 (preannunciarsi via.

Presentazioni simili


Presentazione sul tema: "Laboratorio di Metodologia Modulo: Metodologie Quantitative Cristina Zogmaister Ricevimento: lu 13-14 (preannunciarsi via."— Transcript della presentazione:

1 Laboratorio di Metodologia Modulo: Metodologie Quantitative Cristina Zogmaister Ricevimento: lu (preannunciarsi via ) per altri giorni / orari P.zza dell'Ateneo Nuovo, 1 (U6) - stanza 3113

2 Struttura del Laboratorio di metodologia 2 moduli metodologie quantitative; metodologie qualitative) al termine dei quali avverrà la registrazione del laboratorio Frequenza obbligatoria (minimo 4 incontri) Assignment

3 Mettere in pratica le conoscenze teoriche acquisite nel corso di Metodologie Quantitative (prof. Marco Perugini) Analisi Fattoriale (PCA) Analisi di Regressione Non è un corso di statistica Non vi spiegherò i concetti della statistica, vedremo insieme come condurre praticamente le analisi statistiche Non è un corso di SPSS La conoscenza di SPSS è un prerequisito del corso Obiettivo

4 Risorse per imparare a usare SPSS I laboratori del nostro ateneo o il vostro PC Il software è disponibile sulla pagina del corso Licenze: PC Mac SPSS / help / esercitazione La biblioteca: manuali introduttivi a SPSS

5 Struttura del corso 6 incontri – frequenza obbligatoria (4 lezioni) Controllo presenza a inizio lezione Presenza fino al termine della lezione 2 assignment [PCA + AF] Entrambi devono ottenere una valutazione almeno sufficiente Registrazione a giugno/luglio [crediti: ] Orario: – [15.30 – con una sola pausa di 15 minuti]

6 Orari degli incontri

7 Contenuti 1. Introduzione 2. Analisi Fattoriale (PCA): introduzione 3. Analisi Fattoriale: approfondimenti [+ assignment 1] 4. Analisi di Regressione: introduzione 5. Analisi di Regressione: la moderazione [+ assignment 2] 6. Analisi di Regressione: la mediazione

8 Lincontro di oggi Sona Systems – il software di gestione dei crediti Inserimento o aggiornamento account Le misure implicite (SC-IAT) Le misure esplicite (questionari) Introduzione a SPSS

9 Sona-systems: Il sistema di gestione degli esperimenti

10 Cliccare su New Participant

11 Coloro che già sono iscritti nel sistema: fare la login e poi aggiornare il proprio profilo

12 Inserite i vostri dati e cliccate su Request Account

13 A questo punto… la vostra iscrizione verrà confermata via . Nell riceverete una password associata al vs. nome utente. Conservate questa password, vi verrà richiesta ogni volta vogliate accedere al sistema (login). Se entro 2 ore, non avete ricevuto la mail di conferma, spedire una mail a

14 Con ID e password, entrate nel sistema

15 Per iscriversi agli studi: Prima - rispondere a un breve questionario. Per cominciare il questionario cliccare su Start Prescreen Entrando nel sistema vedrete gli studi disponibili. Inoltre sarete informati automaticamente via sui nuovi studi Tipi di studi in laboratorio: il sistema permette di fissare degli appuntamenti per venire a fare un esperimento. on-line: il sistema serve per guidarvi direttamente sullo studio on-line e registra la vostra partecipazione Per partecipare a un esperimento, cliccare su Study sign-in, verrà data indicazione degli studi disponibili e della ricompensa per la partecipazione (CFU o più raramente denaro) scegliere lo studio al quale si desidera partecipare Scegliere lorario di partecipazione

16 Attenzione: Se non si può partecipare a uno studio per cui ci si è registrati, è necessario cancellare la prenotazione o avvertire la persona responsabile dellesperimento Oltre 4 No-Shows senza avvertire, potrete essere rimossi dal sistema. Tutorial su sona systems tra i materiali del corso

17 Esempi: misure esplicite ed implicite Attenzione: negli assignment userete i dati che raccogliamo ora (con dati di scarsa qualità le analisi sono molto più difficili!!!)

18 Le misure implicite IAT (Greenwald, McGhee & Schwartz, 1998) Obiettivo: misurare lautostima implicita Operazionalizzazione: associazione automatica tra il sé e la valenza positiva Che categorie usiamo?

19 IAT autostima Associazione io – positivo (e altri – negativo) IAT autostima 1. Io Altri 2. Positivo Negativo 3. Io-Positivo Altri-Negativo 4. Altri Io 5. Altri-Positivo Io-Negativo Differenza RT 5° - 3°

20 Limite dello IAT autostima: presenza della categoria altri Come risolvere il problema? SC-IAT (Karpinski e Steinman, 2003) (creato principalmente per superare la natura bipolare dello IAT) Io Positivo Negativo

21 Struttura del SC-IAT

22 Ora rispondiamo a uno SC-IAT Trascinare la cartella PRIMA LEZIONE sul desktop. Aprire prima lezione sul desktop. Fare doppio click su ESERCITAZIONE.exp Risponderete allo SC-IAT e a una misura dautostima esplicita (il vostro anonimato è protetto – utilizzerete un file dati in cui le vostre risposte non potranno essere riconosciute)

23 Impressioni? Uno dei due blocchi era più facile? In uno dei due blocchi avete fatto meno errori? La struttura: PRIMO BLOCCO: Positivo – io Negativo SECONDO BLOCCO: Positivo Negativo – io Calcolo del punteggio: ?

24 Una scala di autostima: la scala Self Liking-Competence (SLC- R) di Tafarodi e Swann

25 Un criterio per validare la scala dautostima: la discrepanza delle capacità Premere 6

26 Altre tipiche misure esplicite - Alcune domande di atteggiamento (verso gli alcoolici) - - Una scala di motivazione

27 Cognizioni esplicite legate al consumo di alcoolici Premere 7 Atteggiamenti espliciti verso gli alcoolici altre domande importanti per validare le misure di atteggiamento esplicito Il DMQ-R: Motivazioni sottostanti al consumo di alcoolici (ricordate: serviranno nellassignment)

28 La logica delle misure a cui avete risposto: SC-IAT autostima Misure esplicite: Questionario autostima Questionario atteggiamento alcoolici ed analcolici Questionario norme sociali alcoolici ed analcolici Questionario motivazione alcoolici Criteri comportamentali Valutazione capacità Consumo di alcoolici Negli assignment esaminerete: Le strutture fattoriali delle scale (autostima, motivazione al consumo di alcoolici) Validità predittiva delle misure esplicite ed implicite (analisi di regressione)

29 Terminato lesperimento Rinominate la cartella complessiva della prima lezione con il vostro numero di matricola (es. PRIMA LEZIONE ) Inserire LA CARTELLA COMPLESSIVA nella cartella \\lib\psico\corsi\zogmaister\consegna

30 SPSS – PASW Statistics 18 Le analisi effettuate a lezione possono essere fatte (eventualmente con piccolissime variazioni) anche con versioni precedenti di SPSS.

31 Iniziamo a usare SPSS Lanciare SPSS (PASW Statistics 18) 3 finestre importanti: Finestra DATI Finestra OUTPUT Finestra SINTASSI

32 Iniziamo a usare SPSS La finestra DATI: Visione DATI Visione VARIABILI Cliccando sulle due linguette in basso a sinistra è sempre possibile passare da una modalità allaltra.

33 Visone dati: I dati sono in una matrice casi x variabili: ogni riga contiene i dati relativi ad un soggetto per tutte le variabili, ogni colonna contiene i valori di una variabile per tutti i casi. casi Variabili

34 Creare un file dati in SPSS

35 Iniziamo a inserire dei dati nella matrice: Prima definiamo le variabili e poi inseriamo i valori.

36 In alto a sinistra in tutte le schermate è presente la barra degli strumenti. Apre files di SPSS già esistenti. Salva il file. Permette di visualizzare i valori delle variabili o le etichette dei valori assegnate; (cfr. diapositive successive.) Ora salviamo il nostro file col nome sociodemo.sav

37 Le analisi statistiche e la finestra di OUTPUT Quali sono le caratteristiche del nostro campione? Frequenze per genere Analisi descrittive età (età minima e massima, media e deviazione standard) Frequenze titolo di studio e residenza Analisi descrittive reddito e famiglia (minimo e massimo, media e deviazione standard) Rappresentiamo GRAFICAMENTE queste caratteristiche

38 Alcune analisi più approfondite Uso della funzione seleziona casi per individuare i partecipanti con più di 35 anni Caratteristiche di questi partecipanti Analisi separate per maschi e femmine Frequenze separate delle età (torniamo al campione completo)

39 Per cambiare i valori di una variabile secondo regole nostre creando una nuova variabile che contenga i valori ricodificati. Creare la nuova variabile redd_f a partire da Reddito, facendo corrispondere ai valori inferiori a il valore 1 (al quale attribuiamo letichetta basso) e ai valori superiori assegna 2 (al quale attribuiamo letichetta alto) Funzione ricodifica in una nuova variabile

40 Funzione ricodifica nella stessa variabile i nuovi valori vengono usati per sostituire i valori vecchi nella stessa variabile. Ricodificare la variabile Età ai valori inferiori a 35viene sostituito il valore 1; ai valori tra 35 e 54 viene sostituito il valore 2; ai valori superiori a 55 viene sostituito il valore 3.

41 Ricodifica nella stessa variabile Funzione ricodifica nella stessa variabile

42 Funzione calcola Per eseguire operazioni matematiche sui valori di una o più variabili e di creare una nuova variabile con i valori calcolati. Creare una nuova variabile di nome red_med – con etichetta Reddito medio per persona del nucleo familiare – eseguendo il rapporto tra i valori della variabile reddito e i corrispondenti valori della variabile famiglia.

43 Funzione calcola La variabile redd_med è stata creata sulla base dei valori delle altre due variabili già esistenti.

44 Salvataggio della sintassi La funzione incolla permette di produrre un file di testo contenente la sintassi che descrive loperazione che si sta eseguendo; successivamente è possibile salvare il file così creato per poter eseguire la sintassi nuovamente ed effettuare la medesima operazione. Risulta una funzione importante se si ha bisogno di tenere traccia delle analisi eseguite o se si deve descrivere in modo efficace e trasparente ad altri ricercatori le operazioni eseguite.

45 Ora calcoliamo alcune statistiche Aprire il file dati1_2.sav Qual è laltezza media del campione? Qual è laltezza media delle donne? E degli uomini? laltezza media dei due sessi è significativamente diversa? Laltezza è legata al peso?


Scaricare ppt "Laboratorio di Metodologia Modulo: Metodologie Quantitative Cristina Zogmaister Ricevimento: lu 13-14 (preannunciarsi via."

Presentazioni simili


Annunci Google