La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

1 LE DISEQUAZIONI DI PRIMO GRADO AD UNINCOGNITA A cura della Prof.ssa Monica Secco, Prof. Roberto Orsaria, Prof.ssa Francesca Ciani.

Presentazioni simili


Presentazione sul tema: "1 LE DISEQUAZIONI DI PRIMO GRADO AD UNINCOGNITA A cura della Prof.ssa Monica Secco, Prof. Roberto Orsaria, Prof.ssa Francesca Ciani."— Transcript della presentazione:

1 1 LE DISEQUAZIONI DI PRIMO GRADO AD UNINCOGNITA A cura della Prof.ssa Monica Secco, Prof. Roberto Orsaria, Prof.ssa Francesca Ciani

2 2 Che cosè una disequazione? Per dare una definizione di disequazione utilizziamo il seguente esempio.

3 3 Due amici desiderano frequentare una palestra, per questo motivo si informano sui prezzi praticati dalle due palestre presenti nella loro città. La palestra privata richiede una quota di iscrizione annua di 312 più 2 per ogni ingresso. La palestra comunale non richiede alcuna quota di iscrizione, ma lingresso costa 5. Quale palestra è più conveniente frequentare?

4 4 Per rispondere a questa domanda, supponiamo che i due amici intendano frequentare la palestra una volta alla settimana, quindi in un anno sono 52 ingressi. Per la palestra privata dovrebbero pagare X 2 = 416 Per la palestra comunale dovrebbero pagare 52 X 5 = 260 Risulta più conveniente la palestra comunale.

5 5 Invece, se vogliono frequentare la palestra tre volte alla settimana, in un anno sono 3 X 52 = 156 ingressi. Per la palestra privata dovrebbero pagare X 2 = 624 Per la palestra comunale dovrebbero pagare 156 X 5 = 780 Risulta più conveniente la palestra privata.

6 6 Il costo annuo di entrambe le palestre dipende dal numero di volte in cui si andrà in palestra. Per la palestra privata si pagherebbe ( x) Per la palestra comunale si pagherebbe 5 x Frequentando la palestra x volte in un anno:

7 7 Quindi la palestra privata risulterà più conveniente se x sarà minore di 5 x, ossia se x < 5 x. Questa è una disequazione, cioé una disuguaglianza in cui compare unincognita, che in questo caso è x. Per sapere quando è più conveniente la palestra privata basta risolvere tale disequazione.

8 8 Prima di passare effettivamente allo studio delle disequazioni, ripassiamo alcune proprietà delle disuguaglianze numeriche. Risolviamo i seguenti problemi ed enunciamo le relative proprietà delle disuguaglianze numeriche.

9 9 1. Se Antonio ha più anni di Barbara, tra 4 anni chi sarà il maggiore di età? Se Antonio ha 16 anni e Barbara ne ha 14, tra 4 anni: Antonio avrà = 20 anni Barbara avrà = 18 anni Quindi il maggiore sarà Antonio. In simboli se A > B allora A + m > B + m.

10 10 2. Una penna azzurra costa più della blu. Spenderò di più acquistando 5 penne di quale colore? Se una penna azzurra costa 0,50 e quella blu costa 0,40, acquistando 5 penne spenderò: 5 X 0,50 = 2,50 per quelle azzurre Quindi spenderò di più acquistando le penne azzurre. In simboli quando m > 0, se A > B allora m · A > m · B. 5 X 0,40 = 2,00 per quelle blu

11 11 3. Andrea e Beatrice hanno lo stesso credito sul cellulare. Mentre Andrea chiama Paolo per 8 minuti, Beatrice telefona a Carla e si parlano per 3 minuti. Se la loro tariffa è di 0,10 al minuto, chi avrà più credito dopo aver telefonato allamico? - 0,10 X 8 = - 0,80 credito di Andrea dopo la tel. a Paolo Quindi il credito di Beatrice sarà maggiore. In simboli quando m B allora m · A < m · B. - 0,10 X 3 = - 0,30 credito di Beatrice dopo la tel. a Carla

12 12 4. Ho due torte uguali per dimensione: una allananas, laltra con i bigné. Se divido la torta allananas tra 12 ragazzi, mentre quella con i bigné tra 6 ragazzi, quale torta sarà tagliata in fette più grandi? Le fette più grandi sono quelle della torta con i bigné. In simboli con A e B concordi, se A > B allora 1/A < 1/B. Le fette della torta allananas sono 1 12 di tutta la torta Le fette della torta con i bigné sono 1 6 di tutta la torta

13 13 5. Mi vengono proposte due tariffe telefoniche: la tariffa A prevede uno scatto alla risposta di 0,15, la B di 0,10. Inoltre la A ha un costo di 0,15 al minuto, mentre la B di 0,12. Con quale tariffa costa di più una telefonata di un minuto? Un minuto con la tariffa A costa (0,15 + 0,15) = 0,30 La tariffa A è la più costosa. In simboli se A > B e C > D allora A + C > B + D. Un minuto con la tariffa B costa (0,10 + 0,12) = 0,22

14 14 6. Ada ha 6 figli e Bianca ne ha 4. Ogni figlio di Ada ha 3 figli, mentre ogni figlio di Bianca ne ha 2. Chi ha più nipoti, Ada o Bianca ? Ada ha 6 X 3 = 18 nipoti Quindi Ada ha più nipoti. In simboli se A > B e C > D allora A · C > B · D. Bianca ha 4 X 2 = 8 nipoti

15 15 se A > B allora A + m > B + m quando m > 0, se A > B allora m · A > m · B quando m B allora m · A < m · B con A e B concordi, se A > B allora 1/A < 1/B se A > B e C > D allora A + C > B + D se A > B e C > D allora A · C > B · D Riepiloghiamo le proprietà delle disuguaglianze:

16 16 Una disequazione è una disuguaglianza nella quale compare unincognita. Prima di procedere con i calcoli, vediamo alcune proprietà delle disequazioni, che derivano dalle proprietà sulle disuguaglianze. Una disequazione in forma normale viene scritta in questo modo: f ( x ) > 0oppuref ( x ) < 0

17 17 Due disequazioni sono equivalenti quando hanno le stesse soluzioni. f ( x ) > g ( x ) f ( x ) + h ( x ) > g ( x ) + h ( x ) sono due disequazioni equivalenti. e Un numero è soluzione di una data disequazione se, sostituendolo allincognita, la disequazione diventa una disuguaglianza vera.

18 18 Proprietà: quando m > 0se f ( x ) > g ( x ) allora m · f ( x ) > m · g ( x ) quando m < 0se f ( x ) > g ( x ) allora m · f ( x ) < m · g ( x )

19 19 Ci sono disequazioni scritte nella forma: f ( x ) 0 oppure f ( x ) 0 Basta trovare le soluzioni delle disequazioni f ( x ) > 0of ( x ) < 0 e aggiungere le soluzioni dellequazione f ( x ) = 0.

20 20 a x + b > 0. Consideriamo una generica disequazione: Sommiamo ad entrambi i membri il termine – b: a x + b – b > 0 - b. Se a > 0, dividiamo entrambi i membri per a: a x > - b. b a - a x a > b a -.> b a -. a x Le soluzioni della disequazione data sono tutti i b a -numeri reali maggiori di. Graficamente:

21 21 Se a < 0, dividiamo entrambi i membri per a, cambiando il verso della disequazione: a x > - b. a x a < b a -.. < b a -No x Le soluzioni della disequazione data sono tutti i b a -numeri reali minori di. Graficamente:

22 22 Problema Il vostro gestore di telefonia vi applica due tariffe a seconda di chi chiamate. La tariffa A è per le chiamate verso telefono fisso: è senza scatto alla risposta e costa 25 cent. al minuto. La tariffa B è per le chiamate verso i cellulari: ha lo scatto alla risposta di 15 cent. e costa 15 cent. al minuto. Dopo quanti minuti è più costoso chiamare il vostro amico a casa piuttosto che sul cellulare?

23 23 Una telefonata di x minuti costa: 25 x al telefono fisso xal cellulare Per trovare quando costa di più chiamare a casa, basta risolvere la seguente disequazione: 25 x > x.

24 24 25 x > x 25 x – 15 x > x – 15 x 10 x > 15 Risolviamo quindi la seguente disequazione: 10 x 10 > Costa di più chiamare a casa se si parla per più di un minuto e mezzo, ossia 3 2.


Scaricare ppt "1 LE DISEQUAZIONI DI PRIMO GRADO AD UNINCOGNITA A cura della Prof.ssa Monica Secco, Prof. Roberto Orsaria, Prof.ssa Francesca Ciani."

Presentazioni simili


Annunci Google