La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

2. Grafi. Indice Tipi di grafi Rappresentazione di grafi Misure su grafi distanza minima centralità dei nodi betweenness, clustering closeness, Distribuzione.

Presentazioni simili


Presentazione sul tema: "2. Grafi. Indice Tipi di grafi Rappresentazione di grafi Misure su grafi distanza minima centralità dei nodi betweenness, clustering closeness, Distribuzione."— Transcript della presentazione:

1 2. Grafi

2 Indice Tipi di grafi Rappresentazione di grafi Misure su grafi distanza minima centralità dei nodi betweenness, clustering closeness, Distribuzione dei gradi dei nodi Esercizi: Pajek Octave:

3 Un grafo è un insieme di nodi (o vertici) V, collegati tra loro da un insieme di archi [arcs,links] o spigoli (o collegamenti o archi non orientati) [edges] E. Si indica con G=(V,E). numero spigoli=|E|=m; numero vertici=|V|=n Lordine di un grafo è il numero di vertici n Un grafo si dice semplice se non ha multiarchi (multiple arcs) o loop multiarco loop Nodi: persone, eventi, jobs, etc. Archi: realazioni personali, sequenze temporali, …

4 Un percorso (walk) è una sequenza di nodi adiacenti. Un percorso chiuso è un percorso in cui il primo e lultimo vertice coincidono ovvero che congiunge un nodo a se stesso Un grafo si dice connesso se dati due nodi qualsiasi esiste un cammino che li congiunge Due archi si dicono connessi se hanno un nodo in comune Un cammino (path) è una sequenza di archi connessi che congiunge due nodi (in modo tale che nessun nodo si ripeta) Un ciclo è un cammino che congiunge un nodo a se stesso

5 n5 n1 n2 n3n4 Percorso diretto (Directed walk) n5-n1-n2-n3-n4-n2-n3 Cammino diretto (Directed Path) n5 n4 n2 n3 Cammino non diretto (Semipath) n1 n2 n5 n4 n3 Ciclo (Cycle) n2 n3 n4 n2 Ciclo non diretto (Semicycle)n1 n2 n5 n1

6 Una componente di un grafo è un sottografo connesso. Un sottografo (sub-graph) di un grafo è un grafo i cui nodi e archi sono un sottoinsieme di quelli di G.

7 Grafo pesato Un grafo è orientato (directed graph o digraph) quando tutti i suoi archi lo sono.

8 Un albero è un grafo connesso senza cicli Un albero è un grafo tale che |n-m|=1 La struttura ad albero di un grafo permette di raggiungere tutti i nodi con il minimo numero di archi Albero di Ricoprimento Minimo =minimum spanning tree (mst) Un insieme di alberi disgiunti è una foresta

9 Prims algorithm Kruskals algorithm Boruvkas algorithm Algoritmi per calcolare il mst

10 Un grafo si dice completo se da ogni nodo si raggiunge qualsiasi altro percorrendo un solo spigolo Il numero di spigoli in un grafo completo è: m=n(n-1)/2 Il grado di ogni vertice è n-1

11 Un grafo si dice regolare se tutti i nodi hanno lo stesso grado

12 Come si rappresenta matematicamente un grafo

13 Matrice di adiacenza Matrice binaria. E simmetrica se il grafo non è orientato e viceversa

14 v1 v2 v3 v4 E1 E2 E3 Matrice Incidenza Matrice adiacenza Lista adiacenza

15 Se il grafo è pesato allora è descritto da una matrice W del tipo:

16 Matrice laplaciana: L=Deg-A: Esempio Alcune proprietà: Sianog autovalori di L L è sempre semidefinita positiva Il numero degli autovalori nulli è quello delle componenti connesse

17 La distanza d(i,j) tra due nodi (non necessariamente distinti) i e j è la lunghezza del cammino minimo che li congiunge. La lunghezza di un cammino è il numero di spigoli (link) in esso contenuti (per i relativi pesi) Il diametro di un grafo è la massima delle distanze minime tra le coppie dei suoi vertici Il diametro di un grafo completo è 1, indipendente da n La lunghezza caratteristica [characteristic path length ], è la media delle distanze minime Distanza e diametro n(n-1)/2 =n° totale di link se la rete è non diretta

18 2m 2*8=16

19 Eigenvector centrality: Authorities and Hubs Nelle reti orientate i gradi in entrata (x i ) ed in uscita (y i ) dei nodi hanno un significato diverso. Si deve risolvere un problema agli autovalori (anzi 2) Av= v WWW Le authority (grande xi) contengono grandi informazioni su un dato tema. Gli hub (grande yi) dicono dove trovare quelle informazioni

20 Manuale Pajek

21 Eingenvector centrality Un nodo è importante se ha «amici» importanti La matrice di adiacenza A è non negativa (ha autovalori 0) Il teorema di Perron-Froboenius afferma che se la rete è connessa allora il massimo autovalore è reale e le componenti dellautovettore corrispondente sono positive Le si può normalizzare e trovare un ranking dei nodi. La componente con il valore più grande è quella con gli «amici più importanti». E il metodo usato da Google. Una pagina è importante se puntata da pagine importanti

22 Degree centrality e Degree centralization Le persone sono centrali se linformazione può facilmente raggiungerle La degree centrality è Il più semplice indicatore di centralità di un nodo ovvero è il numero dei sui vicini (il suo grado) La degree centralization di una rete è la misura di quanto la sua struttura sia lontana da quella di una rete a stella. Esempio v3 v1 v4 v2 v5 A v1 v4 v3 v2 v5 C v1 v4 v3 v2 v5 B In una rete con linee multiple o loops (non semplice) il grado di un vertice è diverso dal numero di vicini (e la centralization può essere >1). In questo caso non è opportuno usare la misura di degree centralization

23 Closeness Centrality and Closeness Centralization In una rete di comunicazione linformazione raggiunge una persona più facilmente ed in modo più corretto se il percorso che deve fare è breve. La Closeness Centrality di un vertice è linverso della somma delle distanze del vertice dagli altri divisa per il numero di vertici : (Sum distanze dai vertici/ n°dei vertici) -1 = ( n°di vertici/sum distanze dai vertici) La Closeness Centralization è la variazione della closeness centrality dei vertici divisa per la variazione della closeness centrality in una rete a stella delle stesse dimensioni N.B. Per calcolare le distanze i nodi devono essere connessi. La closeness centralization è una misura definita solo su una componente connessa.

24 Lefficienza del grafo G è definita così: Questa quantità è basata sullassunzione che lefficienza nella comunicazione tra due nodi i e j è uguale a Centrality: efficiency (di un grafo)

25 Il grado può non riuscire a cogliere limportanza di un nodo La betweenness (essere tra) di un nodo i è il numero di cammini minimi (geodesic paths) tra altri vertici che lo attraversano diviso per il numero totale di cammini minimi.

26 Betweenneess Centrality and Betweenness Centralization Una misura di centralità è quella dell «essere intermediario» ad esempio in una rete di comunicazione cioè il flusso di informazioni che una persona può controllare perché la attraversa. La Betweenness centrality di un vertice è il numero di cammini minimi (geodesiche) che attraversano un nodo diviso per il numero totale di cammini minimi La Betweenness centralization è la variazione della Betweenness Centrality dei vertici divisa per la variazione della betweenness centrality in una rete a stella delle stesse dimensioni.

27 La betweennees può essere una misura della vulnerabilità del grafo ad attacchi selettivi ai suoi nodi

28 degree Alaska

29

30

31 In Pajek 21=7*6/2 Il coefficiente di clustering C i del nodo i è il numero di spigoli esistenti tra i suoi nodi vicini diviso per tutti i nodi possibili tra i vicini stessi Clustering coefficient

32 Deg(v)=degree of v |E(G1(v)|=n°di connessioni tra i vicini di v

33 Il Clustering Coefficient del grafo è la media dei clustering dei nodi: Esistono altre definizioni di clustering Coefficient che danno valori simili (ma non identici) Gli alberi hanno coefficiente di Clustering =0 Il Clustering misura la connessione dellintorno di una rete e fornisce unaltra misura della robustezza del grafo. Se un grafo ha un valore di Clustering alto anche se eliminiamo un nodo il grafo rimane connesso

34 Piccardi ACN2010

35 Esercizi: Pajek Applicazione delle misure di centralità viste Octave: degree distribution


Scaricare ppt "2. Grafi. Indice Tipi di grafi Rappresentazione di grafi Misure su grafi distanza minima centralità dei nodi betweenness, clustering closeness, Distribuzione."

Presentazioni simili


Annunci Google