La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

IL CROLLO DELLE IPOTESI SULLETERE E L AVVENTO DELLA RELATIVITA RISTRETTA Prof.ssa Donatiello Angela.

Presentazioni simili


Presentazione sul tema: "IL CROLLO DELLE IPOTESI SULLETERE E L AVVENTO DELLA RELATIVITA RISTRETTA Prof.ssa Donatiello Angela."— Transcript della presentazione:

1

2 IL CROLLO DELLE IPOTESI SULLETERE E L AVVENTO DELLA RELATIVITA RISTRETTA Prof.ssa Donatiello Angela

3 Le origini del concetto di etere Il problema delletere affonda le sue radici nel lontano 380 a.C. grazie alle teorie di Aristotele relative al moto dei corpi celesti. Aristotele divise infatti la realtà sensibile in due sfere fra loro nettamente distinte: il mondo sublunare e il mondo sopralunare. Il primo caratterizzato da tutte quante le forme di mutamento e pertanto corruttibile, il secondo caratterizzato dal solo movimento circolare, simbolo di perfezione geometrica

4 Mistica del quattro ARIA TERRA ACQUA FUOCO Aristotele introdusse un quinto elemento, quinta essenza che rappresentava la perfezione del moto circolare dei corpi celesti. nacque così letere, ovvero ciò che corre sempre. Esso è ingenerato, incorruttibile, non soggetto ad accrescimento e ad alterazione, né ad altre affezioni che implichino mutamenti.

5 La teoria ondulatoria della luce e il ritorno delletere La teoria ondulatoria di Huygens (1678) stabilisce unanalogia tra la propagazione della luce e il moto di unonda sulla superficie dellacqua o quello delle onde sonore nellaria. Nel suo trattato sulla luce, Huygens scrisse: Se oltre ciò, il passaggio della luce richiede tempo, il che non tarderemo a vedere, ne conseguirà che questo movimento impresso alla materia interposta sarà progressivo e pertanto si propagherà, come fa il suono, per superfici sferiche e per onde; poiché le chiamo onde per la loro somiglianza con quelle che vediamo formarsi nellacqua allorché vi si getta un sasso e la cui propagazione si effettua in circoli successivi, sebbene queste ultime traggano origine da unaltra causa e si estendano soltanto su di una superficie piana.

6 Se dovevano esistere delle onde allora doveva sicuramente esistere qualcosa che oscillasse e questo qualcosa fu chiamato etere, una sostanza estremamente fine e senza peso che permeava lo spazio astronomico attraversato dalla luce. Letere veniva concepito come un mezzo elastico presente in ogni punto dello spazio e capace di trasmettere le onde luminose con le proprie vibrazioni.

7 La costante c e la natura elettromagnetica della luce Nel 1864, Maxwell dalle sue celebri equazioni dedusse che le onde elettromagnetiche, in assenza di materia, si propagano con velocità: c = =2, m/s In assenza di materia, il valore della velocità di propagazione delle onde elettromagnetiche coincide con buona approssimazione con quello della luce Maxwell formulò quindi lipotesi che la luce avesse una natura elettromagnetica

8 Letere elettromagnetico Maxwell si comportò in modo ambivalente nei confronti della realtà eterea, in quanto etichettava letere come... lipotesi scientifica che più si avvicina ad una congettura. Ciò nonostante se ne servì per dare una giustificazione alle sue scoperte. Gli eteri furono inventati per far sì che i pianeti potessero nuotarci dentro, per costituire atmosfere elettriche ed effluvi magnetici, per convogliare le sensazioni da una parte allaltra del nostro corpo e così via, finché tutto lo spazio era stato riempito tre o quattro volte di eteri vari... Lunico vero etere sopravvissuto è quello ideato da Huygens per rendere conto della propagazione della luce. [...] Le proprietà di questo mezzo [...] sono precisamente quelle richieste dalla spiegazione dei fenomeni elettromagnetici.

9 Newton o Maxwell: chi ha ragione? Nella meccanica newtoniana la velocità di un corpo rispetto ad un osservatore dipende dalla velocità dellosservatore, per cui osservatori con velocità diverse misureranno valori diversi legati tra loro dalle celebri trasformazioni di Galileo. Le equazioni di Maxwell, invece, per ciò che concerne la luce, non ammettono la possibilità che le velocità si sommino nel modo descritto dalla meccanica newtoniana e ciò comporta che tali equazioni non risultano invarianti per trasformazioni galileiane.

10 Cosa cambiare? Le equazioni di Maxwell o le trasformazioni di Galileo? conservare intatte le trasformazioni galileiane accettare la validità di un unico principio di relatività trovare un errore nelle equazioni di Maxwell lasciare invariate le equazioni di Maxwell, accettare la validità di un unico principio di relatività cambiare le trasformazioni di Galileo lasciare invariate le trasformazioni galileiane, accettare le equazioni di Maxwell esiste un riferimento privilegiato in cui considerare valide le equazioni di Maxwell

11 Il riferimento privilegiato Ammessa lesistenza di un sistema di riferimento privilegiato S in cui la luce viaggia con velocità c e ritenute valide le trasformazioni di Galileo, ne segue che la velocità di propagazione della luce per un sistema S 1 in moto rispetto ad S ha un valore diverso da c. A quale sistema di riferimento doveva essere riferita la velocità c della luce? In accordo con la convinzione dellepoca per cui le onde non possono propagarsi nel vuoto, la cosa più naturale da fare era quella di considerare come riferimento privilegiato per le equazioni di Maxwell un riferimento S collegato con letere.

12 Trascinato o stazionario : le due ipotesi sulletere la Terra orbitando intorno al Sole e muovendosi nel mezzo etereo avrebbe trascinato letere nel suo moto, oppure, con le parole di Thomas Young, lo avrebbe lasciato scivolare attraverso di sé...come il vento attraverso un boschetto di piante.

13 Il vento etereo Sulla Terra, in moto attraverso il mezzo etereo, il moto relativo delletere sarebbe dovuto apparire come il vento e, proprio come il vento percorso da un suono altera la velocità del suono stesso, così il vento etereo che supporta la luce, avrebbe dovuto alterare la velocità della luce lungo la direzione del vento.

14 Lesperimento di Michelson e Morley e il crollo delletere stazionario Dal 1880 al 1882 Albert Michelson soggiornò in Europa al fine di approfondire le sue conoscenze nel campo della fisica e fu proprio durante la sua permanenza a Berlino che egli costruì il suo primo interferometro, grazie anche ai finanziamenti ricevuti da Alexander Bell, ma l apparecchiatura presentava molteplici inconvenienti di natura tecnica. Lesperimento definitivo fu realizzato nel 1887, quando Michelson, professore alla Case School of Applied Science di Cleveland, unì le sue forze a quelle di Edward Morley, allora docente di chimica nella vicina Western Reserve University

15 Linterferometro di Michelson-Morley Un raggio luminoso emesso da una sorgente di luce, giunto sullo specchio semiriflettente M, in parte viene trasmesso ed in parte viene riflesso. Lo specchio semiriflettente è inclinato di 45° rispetto alla direzione di propagazione del segnale luminoso. Il raggio trasmesso torna indietro dopo essersi riflesso su se stesso sullo schermo S 2 e, dopo una seconda riflessione sullo specchio M, giunge su uno schermo. Analogamente, il raggio riflesso da M subisce una seconda riflessione sullo specchio S 1 e successivamente torna indietro, passando attraverso M e giungendo così anchesso sullo stesso schermo. Tali raggi, attraversando la zona comune e sovrapponendosi, origineranno sullo schermo delle frange dinterferenza

16 Frange dinterferenza Quando due raggi di luce interferiscono tra di loro, sullo schermo su cui essi si proiettano si distinguono nettamente delle bande o frange, rettilinee, bianche, nere e colorate disposte perpendicolarmente alla linea che congiunge i centri dei due raggi di luce; queste prendono il nome di frange di interferenza. La frangia centrale è bianca; quindi, da una parte e dall'altra, vi sono due bande nere disposte simmetricamente e poi ancora delle frange iridate nelle quali si possono distinguere dei massimi e dei minimi di intensità luminosa. Quando si opera con luce monocromatica si ottiene un sistema di frange alternativamente brillanti e oscure più o meno equidistanti, mentre se si passa da radiazioni rosse a radiazioni violette si osserva una diminuzione di ampiezza delle bande. L'interferometro di Michelson-Morley funziona proprio studiando le frange di interferenza di due raggi in cui un singolo raggio viene scisso da uno specchio semiriflettente

17 Lidea dellesperimento Se il sistema è fermo e la luce si muove sempre a velocità c, ruotando il dispositivo di 90°, si potranno osservare sempre le stesse frange di interferenza. Se invece si considera lesistenza di un unico riferimento in cui la luce viaggia a velocità c, ossia quello delletere stazionario in cui la Terra si muove con velocità di 30 Km/s, poiché linterferometro è solidale con la Terra, si muoverà anchesso con velocità pari a 30 Km/s, e dunque, ruotando il sistema, sullo schermo si dovrebbe notare uno spostamento delle frange di interferenza.

18 Detto t 1 il tempo impiegato dal primo raggio a percorrere, andata e ritorno, il tratto L 1 e t 2 il tempo impiegato dal secondo raggio per percorrere, andata e ritorno, il tratto L 2, si ha che la differenza dei cammini ottici sarà Δ= c(t 1 -t 2 ) schermo M S1S1 S2S2 L1L1 L2L2 vetere

19 Tempo impiegato dal primo raggio Lipotesi che linterferometro si muova nelletere con velocità v=30 Km/s è del tutto equivalente, da un punto di vista matematico, a considerare linterferometro fermo e letere che vi scorre dentro con velocità uguale in modulo, ma di verso contrario L1L1 etere L2L2 ANDATA RITORNO

20 Lungo questo percorso il fotone può essere paragonato ad un nuotatore che allandata ha la corrente contraria, mentre al ritorno ha la corrente a favore, pertanto, accettando la legge di composizione galileiana delle velocità, si ha che: t 1 = t andata + t ritorno =

21 Tempo impiegato dal secondo raggio il percorso fatto dal fotone non è esattamente rettilineo, ma sarà formato dai due lati di un triangolo il fotone va a velocità c lungo i lati del triangolo, mentre lo strumento si sposta con velocità v verso il basso etereS2S2 L2L2 S2S2 v c vpvp

22 La differenza di cammino ottico Essendoci una differenza di cammino ottico non nulla, si ha la certezza della presenza sullo schermo di frange di interferenza, ma ciò che interessa maggiormente è capire cosa accade alle frange quando viene fatto ruotare lo strumento di 90° Dopo aver ruotato lo strumento di 90°si avrà una differenza di cammino ottico Δ La differenza tra i due camini ottici dovrebbe dar luogo ad uno spostamento delle frange di interferenza

23 Lesito dellesperimento Michelson e Morley, pur ripetendo svariate volte le esperienze durante il giorno e la notte e durante le stagioni dellanno, non trovarono nessuno spostamento delle frange. " L'interpretazione dei risultati ottenuti è che non esiste alcuno spostamento delle frange d'interferenza. Si mostra in tal modo che è errato il risultato dell'ipotesi dell'etere stazionario, e ne consegue la necessaria conclusione secondo cui l'ipotesi stessa è sbagliata. Questa conclusione contraddice direttamente la spiegazione fino ad ora generalmente accettata per i fenomeni di aberrazione: spiegazione che presuppone che la Terra si muova attraverso l'etere e che quest'ultimo rimanga in quiete." (Albert Michelson)

24 Laberrazione della luce stellare e la sconfitta delletere trascinato Linesistenza di un etere trascinato fu provata sperimentalmente da James Bradley nel 1727, mediante losservazione astronomica del fenomeno dellaberrazione della luce stellare, che produce lapparente variazione di posizione di una stella. Il moto apparente di una stella fissa nel corso di un anno è dovuto al moto di rivoluzione della Terra intorno al Sole. La direzione di una data stella dovrebbe dunque essere diversa dopo sei mesi, quando cioè la Terra si trova dalla parte opposta rispetto al Sole, ma Bradley notò alcune discordanze per alcune stelle. Dalle sue osservazioni comprese che leffetto notato sullaberrazione della luce non era prodotto dalla posizione della Terra nella sua orbita, bensì dalla direzione del moto che variava nel tempo lungo lorbita.

25 il fotone colpirà loculare solo se v l/c è uguale allo spostamento d del cannocchiale d/l=v/c Esperimento del cannocchiale Stella fissa Raggio di luce obiettivo oculare l d

26 Il telescopio, dunque, non deve essere orientato sulla posizione reale della stella, ma su un punto del cielo spostato nella direzione della velocità v. Il rapporto β = tg α = v/c è detto costante di aberrazione, mentre α è detto angolo di aberrazione l d α α

27 Lesperimento di Bradley è una prova dellinesistenza delletere trascinato in presenza di un mezzo etereo che verrebbe trascinato dalla Terra nel suo moto, non sarebbe più possibile osservare il fenomeno dellaberrazione. Per guardare una stella fissa, non si dovrebbe inclinare il telescopio, ma puntarlo lungo la direzione della stella, in quanto letere seguirebbe la Terra e dunque anche i fotoni continuerebbero a colpire il cannocchiale in direzione ortogonale al moto della Terra.

28 Lipotesi della contrazione di Fitzgerald e Lorentz (1892) Ogni corpo in moto con velocità v rispetto alletere, si contrae lungo la direzione del moto secondo il fattore Fitzgerald e Lorentz tirarono in ballo il concetto di urto, per cui ipotizzarono che fosse proprio lurto con letere a far contrarre lo strumento In tal modo era possibile conservare lidea delletere e ritenere che fosse proprio letere il responsabile della contrazione Lipotetica contrazione dipende solo dalla velocità con cui si muove linterferomentro, per cui ogni oggetto dovrebbe contrarsi della stessa quantità. In realtà Fitzgerald e Lorentz intuirono la soluzione che risolveva il problema, ma non ne compresero la natura

29 Dalle trasformazioni di Galileo alle trasformazioni di Lorentz Lo spostamento delle frange che si sarebbe dovuto osservare con lesperimento di Michelson e Morley era una conseguenza dellaver ritenuto valide le equazioni di Maxwell e le trasformazioni di Galileo e dellaver accettato lesistenza di un sistema di riferimento privilegiato collegato con letere, in cui la luce avrebbe dovuto propagarsi con velocità c.

30 Volendo conservare le trasformazioni Galileiane, era dunque necessario pensare che le leggi dellelettrodinamica fossero sbagliate nella formulazione data da Maxwell, ma lesperienza continuava a confermare in pieno la validità di tali equazioni. Lunica strada possibile era dunque quella di modificare le trasformazioni di Galileo, cercando delle nuove leggi, rispetto alle quali le quattro equazioni di Maxwell risultassero invarianti. Nel 1899, Lorentz, formulò quelle che oggi sono note come trasformazioni di Lorentz

31 Labbandono delletere e lavvento della relatività ristretta di Albert Einstein (1905) Lessenziale è di sbarazzarci da pregiudizi profondamente radicati e spesso invocati senza previa disanima. [...] Dobbiamo avere il coraggio di attaccare il solo punto palesemente debole, vale a dire le modalità della trasformazione per il passaggio da un riferimento ad un altro. (Albert Einstein)

32 I postulati della relatività ristretta Tutte le leggi della natura sono le stesse in tutti i sistemi di riferimento in moto uniforme gli uni rispetto agli altri La velocità della luce, nel vuoto, è la stessa in tutti i sistemi di riferimento, in moto uniforme gli uni rispetto agli altri. Einstein conserva dunque il principio di relatività di Galileo, ma rinnega le trasformazioni classiche su cui erano basati i calcoli fatti per lesperimento di Michelson e Morley, sostituendole con le nuove trasformazioni di Lorentz, rispetto alle quali le quattro equazioni di Maxwell risultano invarianti.

33 Critica al concetto di simultaneità R AB v R R A A B B

34 Lerrore sta nellignorare il principio di relatività. Non esiste un riferimento privilegiato in cui si possa rilevare un moto assoluto. Non esistono la quiete e il moto assoluti. Si può solo parlare di moto relativo. Eventi che sono simultanei in un particolare sistema di riferimento inerziale possono cessare di esserlo se la misura avviene rispetto ad un diverso riferimento inerziale. Dove è lerrore?

35 Nella relatività galileiana: Il problema del tempo assoluto non venne mai messo in discussione Il problema della simultaneità di due eventi lontani non venne mai messo in discussione

36 Prima si pensava che se ogni cosa dovesse sparire improvvisamente dal nostro mondo, comunque sarebbero rimasti lo spazio e il tempo; dopo la relatività speciale e generale sono convinto che dovranno sparire insieme ad ogni cosa anche lo spazio e il tempo Il crollo dei concetti assoluti di spazio e tempo

37 La contrazione delle lunghezze e la dilatazione dei tempi Un osservatore in quiete in un sistema inerziale vede accorciato un oggetto che si trova in quiete rispetto a un altro sistema inerziale in moto rispetto al proprio sistema Un osservatore in quiete in un sistema inerziale vede dilatarsi lintervallo di tempo durante il quale si verifica un fenomeno in un altro sistema inerziale in moto rispetto al proprio sistema

38 Risonanze sullarte Salvador Dalì, La persistenza della memoria (1931), olio su tela


Scaricare ppt "IL CROLLO DELLE IPOTESI SULLETERE E L AVVENTO DELLA RELATIVITA RISTRETTA Prof.ssa Donatiello Angela."

Presentazioni simili


Annunci Google