Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,

Slides:



Advertisements
Presentazioni simili
8) GLI INTERVALLI DI CONFIDENZA
Advertisements

LA VARIABILITA’ IV lezione di Statistica Medica.
STATISTICA DESCRITTIVA
Intervalli di confidenza
Proprietà degli stimatori
5) IL CAMPIONE CASUALE SEMPLICE CON RIPETIZIONE
Fondamenti della Misurazione
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Lez. 3 - Gli Indici di VARIABILITA’
Analisi dei dati per i disegni ad un fattore
ERRORI L'errore è presente in ogni metodo analitico e può essere dovuto a cause diverse. L’errore può essere definito come la differenza tra il valore.
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
Elementi di statistica Elementi di statistica M. Dreucci Masterclasses LNF Elementi di statistica M. Dreucci.
Variabili Le variabili sono proprietà di eventi reali che possono modificarsi nel tempo o in diversi luoghi e che possono essere misurate. Tipologia delle.
Progetto Pilota 2 Lettura e interpretazione dei risultati
Inferenza statistica per un singolo campione
Valutazione delle ipotesi
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
Processi Aleatori : Introduzione – Parte I
Distribuzioni di probabilità
Appunti di inferenza per farmacisti
Efisio Antonio Coppola
Corso di biomatematica lezione 10: test di Student e test F
Corso di biomatematica lezione 4: La funzione di Gauss
Corso di biomatematica Lezione 2: Probabilità e distribuzioni di probabilità Davide Grandi.
Corso di biomatematica lezione 6: la funzione c2
STATISTICA a.a PARAMETRO t DI STUDENT
Cenni di teoria degli errori
Lezione 4 Probabilità.
Verifica delle ipotesi su due campioni di osservazioni
METODI E CONTROLLI STATISTICI DI PROCESSO
Quale valore dobbiamo assumere come misura di una grandezza?
Appunti del Corso di fisica per istituti professionali
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Le distribuzioni campionarie
Statistica Che cos’è?.
Unità 6 Test parametrici e non parametrici Test per la verifica della normalità Funzione di ripartizione.
TRATTAMENTO DEI DATI ANALITICI
Unità 2 Distribuzioni di probabilità Misure di localizzazione Misure di variabilità Asimmetria e curtosi.
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
STATISTICA INFERENZIALE
La teoria dei campioni può essere usata per ottenere informazioni riguardanti campioni estratti casualmente da una popolazione. Da un punto di vista applicativo.
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Cap. 15 Caso, probabilità e variabili casuali Cioè gli ingredienti matematici per fare buona inferenza statistica.
Anova a due fattori Esempio di piano fattoriale: il caso della progettazione robusta di batterie Tipo di Materiale Temperatura (°F)
PROPAGAZIONE DEGLI ERRORI:
Gli indici di dispersione
Grandezze e Misure
La verifica d’ipotesi Docente Dott. Nappo Daniela
Lezione B.10 Regressione e inferenza: il modello lineare
Corso di Analisi Statistica per le Imprese
IL CAMPIONE.
Appunti conclusioni simulazione lancio dadi
“Teoria e metodi della ricerca sociale e organizzativa”
Le distribuzioni campionarie
2) PROBABILITA’ La quantificazione della ‘possibilità’ del verificarsi di un evento casuale E è detta probabilità P(E) Definizione classica: P(E) è il.
Analisi della varianza Resistenza di una fibra sintetica: essa è legata alla percentuale di cotone che potrà però variare tra il 10 e il 40% perché il.
Intervalli di confidenza
Eventi aleatori Un evento è aleatorio (casuale) quando non si può prevedere con certezza se avverrà o meno I fenomeni (eventi) aleatori sono studiati.
La distribuzione campionaria della media
Elaborazione statistica di dati
Metodologia della ricerca e analisi dei dati in (psico)linguistica 24 Giugno 2015 Statistica inferenziale
STATISTICHE DESCRITTIVE
TRATTAMENTO STATISTICO DEI DATI ANALITICI
STATISTICA P IA F ONDAZIONE DI C ULTO E R ELIGIONE C ARD. G. P ANICO Azienda Ospedaliera CORSO DI LAUREA IN INFERMIERISTICA Sr. Margherita Bramato.
La covarianza.
Operazioni di campionamento CAMPIONAMENTO Tutte le operazioni effettuate per ottenere informazioni sul sito /area da monitorare (a parte quelle di analisi)
Elementi di statistica e probabilità Misure Meccaniche e Termiche - Università di Cassino 2 Eventi aleatori e deterministici Un evento aleatorio può.
1 DISTRIBUZIONI DI PROBABILITÁ. 2 distribu- zione che permette di calcolare le probabilità degli eventi possibili A tutte le variabili casuali, discrete.
Introduzione all’inferenza
Transcript della presentazione:

Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica, definiamo errori casuali tutte quelle incertezze sperimentali che possono essere rilevate mediante la ripetizione delle misure. Questi tipi di errore si possono manifestare per svariati motivi: ad esempio a causa della variazione del tempo di reazione da un soggetto ad un altro (e anche per lo stesso soggetto in situazioni diverse), per errori di lettura di indici dovuti ad un non perfetto allineamento tra l'osservatore e la scala graduata o anche per semplici fluttuazioni del sistema in esame attribuibili per esempio a degli sbalzi termici. La loro natura di casualità è proprio legata al fatto che essi hanno un'origine aleatoria e molto spesso temporanea: questo, al ripetersi delle misure, determina sull'evento in esame delle fluttuazioni in modo tale che le misurazioni che si ottengono oscillano attorno ad un valore pressochè costante. Ovviamente nel caso in cui sia possibile ripetere le misure l'individuazione di tali errori è abbastanza semplice: inoltre all'aumentare del numero delle misure, le fluttuazioni introdotte tendono a "bilanciarsi" in quanto avvengono sia in difetto che in eccesso con la stessa probabilità.

Errori casuali La densità di probabilità Vogliamo ora indagare sulla distribuzione dei risultati di misure ripetute della medesima grandezza, nell’ipotesi che esse siano affette da errori esclusivamente casuali. La densità di probabilità

La legge dei grandi numeri La legge dei grandi numeri è fondamentale nella teoria delle variabili casuali. Quella che segue è una sua formulazione in termini semplici ed intuitivi. Essa afferma che, se E è un evento e p la sua probabilità di successo, cioè la probabilità del verificarsi di E in una prova, allora la frequenza relativa dei successi in n prove indipendenti converge alla probabilità di E, ovvero a p, quando n tende ad infinito (se il numero di prove effettuate è sufficientemente grande, la frequenza relativa dei successi nelle n prove si avvicinerà sempre più alla probabilità di successo nella singola prova, via via che n cresce). Questo teorema, formulato da Jakob Bernoulli (1654-1705), fornisce una possibile giustificazione della legge empirica del caso, secondo la quale la frequenza relativa di un evento tende a stabilizzarsi all'aumentare del numero delle prove.

La distribuzione di Gauss

La distribuzione di Gauss (1)

h1>h2>h3 h1 h2 h3 La funzione di Gauss per tre diversi valori di h

La distribuzione di Gauss La distribuzione di Gauss è anche nota come legge degli errori, in quanto essa descrive in particolare la distribuzione degli errori casuali relativi a successive misure di una quantità fisica. (2) (2)

La distribuzione di Gauss

La distribuzione di Gauss 2.

Distribuzione normale standardizzata (3)

Distribuzione normale standardizzata

Scarto quadratico medio o deviazione standard Stima più corretta di 

Popolazione e campione. Inferenza statistica. Spesso ci si trova di fronte al problema di arrivare a conclusioni valide per un ampio gruppo di individui o di oggetti; in questi casi, invece di esaminare l’intero gruppo, detto la popolazione, esame che può comportare notevoli difficoltà o in qualche caso essere perfino impossibile, si può fare ricorso all’esame di una piccola parte della popolazione: questa piccola parte viene definita un campione. Il procedimento mediante il quale dall’analisi dei risultati osservati sul campione si perviene a conclusioni relative all’intera popolazione è conosciuto come inferenza statistica.

Popolazione e campione. Inferenza statistica. Esempi: Vogliamo trarre conclusioni circa la statura media (o il peso) di 12000 studenti adulti (popolazione) esaminando solo 100 studenti (il campione) estratti dalla popolazione. Desideriamo trarre conclusioni circa la percentuale di bulloni difettosi costruiti da una certa fabbrica durante i 6 giorni lavorativi di una settimana, esaminando ogni giorno 20 bulloni prodotti in diverse ore della giornata. In questo caso la popolazione sono i bulloni prodotti nella settimana lavorativa, mentre il campione sono i 120 bulloni scelti.

Popolazione e campione. Inferenza statistica. Osservazioni: Il termine popolazione non ha necessariamente il significato che esso possiede nel linguaggio comune; infatti spesso il termine popolazione è usato per denotare osservazioni o misurazioni piuttosto che individui od oggetti. La popolazione può essere finita o infinita; il numero che la definisce sarà detto grandezza della popolazione. Analogamente il numero dei componenti il campione sarà detto grandezza del campione e denotato ad esempio con N.

Mediamente la varianza di un campione di N misure è inferiore alla varianza della intera popolazione per un fattore (N-1)/N. Questo è il motivo per cui, per avere una stima mediamente corretta di s, si usa la quantità:

Per calcolare lo scarto quadratico medio può essere utile sfruttare la seguente proprietà: 

La distribuzione di Gauss

Si può dimostrare che :

Deviazione standard della media

0.115 0.115