Università di Napoli “Federico II” Laurea Triennale in Scienza ed Ingegneria dei Materiali Corso di Fisica Generale I Prof. Corrado de Lisio.

Slides:



Advertisements
Presentazioni simili
Analisi Matematica A ● Test di ingresso, OFA, Test di Recupero
Advertisements

IL SISTEMA INTERNAZIONALE
Introduzione alla Fisica
Autovalori e autovettori
LE TRASFORMAZIONI GALILEIANE
Scalari e vettori In fisica si lavora con due tipi di grandezze: le grandezze scalari e le grandezze vettoriali. Le grandezze scalari sono quelle grandezze.
Definizione e caratteristiche
1 Grandezze omogenee, commensurabili e incommensurabili
Introduzione Fisica: scienza sperimentale basata su esperimenti
Elementi di Matematica
Sistemi di unità di misura
RICHIAMI ELEMENTARI DI ALGEBRA MATRICIALE
Mai dimenticare l’unita’ di misura
Introduzione alla fisica
Il metodo scientifico La Fisica studia i fenomeni naturali per:
G. Pugliese, corso di Fisica Generale
Riassunto della prima lezione
Grandezze Fisiche: dirette
Laurea I Livello Scienze dellallevamento, igiene, e benessere del cane e del gatto a.a. 2006/2007 Lezioni di Fisica Applicata Dott. Francesco Giordano.
Il prodotto vettoriale
Grandezze scalari e vettoriali
Geometria analitica Gli assi cartesiani Distanza di due punti
Formule generali per il calcolo di superficie e volume di solidi a 2 basi Preparatevi all’esame di matematica e scienze, studiando queste pagine, rielaborate.
Scienze Integrate Chimica
Analisi Matematica A ● Prerequisiti
Analisi Matematica A ● Prerequisiti
LE GRANDEZZE FISICHE Sono proprietà dei corpi per le quali è possibile eseguire operazioni di misura. Misurare significa confrontare la grandezza con.
Spazi vettoriali astratti Somma e prodotto di n-ple Struttura di R n.
Corso di Fisica per il corso di laurea in
GRANDEZZE FISICHE Corso di Laurea in BIOTECNOLOGIE FISICA SPERIMENTALE
I.T.C. e per Geometri Enrico Mattei
Precorso di Fisica 2011/2012 Facoltà di Agraria
Corso di Laurea di Primo Livello in INFORMATICA Fisica I
INTRODUZIONE Scopo della Fisica è quello di fornire una descrizione quantitativa di tutti i fenomeni naturali, individuandone le proprietà significative.
Grandezze fisiche «una grandezza fisica è la proprietà di un fenomeno, corpo o sostanza, che può essere espressa quantitativamente mediante un numero e.
Lezioni di FISICA MEDICA
INTRODUZIONE Scopo della Fisica è quello di fornire una descrizione quantitativa di tutti i fenomeni naturali, individuandone le proprietà significative.
Unita’ Naturali.
LE GRANDEZZE.
Calcoli applicati alla chimica analitica
DAI NUMERI NATURALI AI RAZIONALI E OLTRE La misura.
Vettori dello spazio bidimensionale (R 2)
Corso di Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni)
FISICA presentazione delle attività formative docente: Lorenzo Morresi
Fisica: lezioni e problemi
Vettori A B VETTORE è un segmento orientato caratterizzato da: C D
Grandezze e Misure
Formule generali per il calcolo di superficie e volume di solidi a 2 basi Preparatevi all’esame di matematica e scienze, studiando queste pagine, rielaborate.
Definizione operativa di una “grandezza fisica”
IL SISTEMA INTERNAZIONALE
CORSO DI MATERIALI E TECNOLOGIE ELETTRICHE
Strumenti Matematici per la Fisica
GEOMETRIA EUCLIDEA NELLO SPAZIO
I Fantastici quattro….
Prof. Giovanni Ianne I vettori.
1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”
Le funzioni matematiche e il piano cartesiano
DEFINIZIONE. La potenza di un numero è il prodotto di tanti fattori uguali a quel numero detto base, quanti ne indica l’esponente. La potenza di un numero.
GRANDEZZE FONDAMENTALI, GRANDEZZE DERIVATE
Proprietà fisiche della materia
Università Federico II di Napoli Facoltà di Scienze Matematiche Fisiche e Naturali Corso di laurea in Informatica Fisica Sperimentale I Gruppo 1 Docente.
angoli orientati negativamente se la rotazione avviene in verso orario
Presentazione del corso 6 crediti, 48 h Mar – Ven 8.30 – Esercitazioni il venerdì 8.30 – Orario di ricevimento:
Cosa è la FISICA Esperienza trenino: Misurare una lunghezza
Università Federico II di Napoli Facoltà di Scienze Matematiche Fisiche e Naturali Corso di laurea in Informatica Fisica Sperimentale I Gruppo 1 Docente.
Il Sistema Internazionale (SI)
La Circonferenza. LA CIRCONFERENZA Assegnato nel piano un punto C detto Centro, si chiama circonferenza la curva piana con i punti equidistanti da C.
Transcript della presentazione:

Università di Napoli “Federico II” Laurea Triennale in Scienza ed Ingegneria dei Materiali Corso di Fisica Generale I Prof. Corrado de Lisio

Informazioni generali Prof. Corrado de Lisio Prof. Corrado de Lisio Dipartimento di Fisica (M.S.A.) Dipartimento di Fisica (M.S.A.) Edificio H - Stanza 2H19 Edificio H - Stanza 2H19 Tel Tel Web: Web:

Informazioni sul corso 6 CFU x 8 ore/CFU = 48 ore di l.f. 6 CFU x 8 ore/CFU = 48 ore di l.f. Circa 33 ore di lezioni Circa 33 ore di lezioni Circa 15 ore di esercitazioni Circa 15 ore di esercitazioni Libro di testo Libro di testo Serway & Jewett, “Principi di fisica” (EdiSES) Serway & Jewett, “Principi di fisica” (EdiSES) Qualunque testo di livello universitario Qualunque testo di livello universitario Esercizi Esercizi Compresi nei libri di testo Compresi nei libri di testo Libri di esercizi livello universitario Libri di esercizi livello universitario

Obiettivi del corso Assimilare i fondamenti della meccanica Assimilare i fondamenti della meccanica Attraverso un linguaggio corretto Attraverso un linguaggio corretto Aspetti qualitativi  quantitativi Aspetti qualitativi  quantitativi Strumenti Strumenti Lezioni frontali + esercitazioni Lezioni frontali + esercitazioni Studio Studio Libri di livello universitario, appunti Libri di livello universitario, appunti Esercizi e problemi Esercizi e problemi Accertamento Accertamento Prove inter-corso (3) Prove inter-corso (3) Prova scritta Prova scritta Colloquio orale Colloquio orale

Introduzione Il metodo scientifico Il metodo scientifico Fase induttiva Fase induttiva Schematizzazione del fenomeno Schematizzazione del fenomeno Grandezze fisiche Grandezze fisiche Proprietà di un fenomeno o di un corpo che si può esprimere quantitativamente (misura della grandezza) Proprietà di un fenomeno o di un corpo che si può esprimere quantitativamente (misura della grandezza) Valore numerico Valore numerico Unità di misura Unità di misura Osservazione sperimentale Osservazione sperimentale Correlazioni tra le varie grandezze fisiche Correlazioni tra le varie grandezze fisiche Formulazione delle leggi (in forma matematica) Formulazione delle leggi (in forma matematica)

Definizione operativa di una grandezza Definizione operativa di una grandezza Diretta: procedimento per la “misura” Diretta: procedimento per la “misura” Criterio di confronto Criterio di confronto Criterio di somma Criterio di somma Determinazione dell’unità di misura Determinazione dell’unità di misura Esempi: lunghezza, massa (inerziale), tempo Esempi: lunghezza, massa (inerziale), tempo Indiretta: formula matematica Indiretta: formula matematica La grandezza è definita per mezzo di una espressione matematica a partire da grandezze già definite La grandezza è definita per mezzo di una espressione matematica a partire da grandezze già definite

Definizione operativa di lunghezza (segmenti) Definizione operativa di lunghezza (segmenti) Criterio di confronto: due segmenti vengono disposti paralleli tra loro ed in modo che un estremo (A) di uno coincida con un estremo (A’) dell’altro Criterio di confronto: due segmenti vengono disposti paralleli tra loro ed in modo che un estremo (A) di uno coincida con un estremo (A’) dell’altro

Definizione operativa di lunghezza (segmenti) Definizione operativa di lunghezza (segmenti) Criterio di confronto Criterio di confronto Uguaglianza: Lunghezze uguali se gli altri due estremi (B e B’) coincidono Uguaglianza: Lunghezze uguali se gli altri due estremi (B e B’) coincidono L (AB) = L (A’B’)

Definizione operativa di lunghezza (segmenti) Definizione operativa di lunghezza (segmenti) Criterio di confronto Criterio di confronto Uguaglianza Uguaglianza Disuguaglianza: Lunghezze diverse se gli altri due estremi (B e B’) non coincidono Disuguaglianza: Lunghezze diverse se gli altri due estremi (B e B’) non coincidono Se da A  A’ si incontra prima B e poi B’ L (AB) < L (A’B’)

Definizione operativa di lunghezza (segmenti) Definizione operativa di lunghezza (segmenti) Criterio di confronto Criterio di confronto Uguaglianza Uguaglianza Disuguaglianza Disuguaglianza Criterio di somma: è la lunghezza del segmento ottenuto allineando i due segmenti, col primo estremo (A’) del secondo segmento coincidente col secondo estremo del primo segmento (B) Criterio di somma: è la lunghezza del segmento ottenuto allineando i due segmenti, col primo estremo (A’) del secondo segmento coincidente col secondo estremo del primo segmento (B) L (AB’) = L (AB) + L (A’B’)

Definizione operativa di lunghezza (segmenti) Definizione operativa di lunghezza (segmenti) Criterio di confronto Criterio di confronto Uguaglianza Uguaglianza Disuguaglianza Disuguaglianza Criterio di somma Criterio di somma Determinazione dell’unità di misura: é la lunghezza (u) di un segmento campione. Determinazione dell’unità di misura: é la lunghezza (u) di un segmento campione. Avendo stabilito i criteri di confronto e di somma, si può raffrontare qualsiasi lunghezza con quella del campione:

Definizione operativa di lunghezza (segmenti) Definizione operativa di lunghezza (segmenti) Criterio di confronto Criterio di confronto Uguaglianza Uguaglianza Disuguaglianza Disuguaglianza Criterio di somma Criterio di somma Determinazione dell’unità di misura: é la lunghezza (u) di un segmento campione. Determinazione dell’unità di misura: é la lunghezza (u) di un segmento campione. L (AB) > 7 u L (AB) < 8 u

TempoMassa (inerziale) Confronto: Si fanno iniziare 2 eventi simultaneamente e si confrontano gli istanti finali Si fanno oscillare 2 masse collegate ad una molla e si determina la frequenza delle oscillazioni UguaglianzaSe i 2 eventi terminano simultaneamente, le loro durate sono uguali Se le 2 frequenze sono uguali, anche le masse sono uguali DisuguaglianzaQuello che termina dopo ha durata maggiore Quella che oscilla a frequenza maggiore ha massa minore Somma Si fa iniziare il 2° evento appena finisce il 1°; la somma delle 2 durate è uguale alla durata dell’evento complesso Se due masse unite oscillano a frequenza, la loro somma è pari a quella di una 3 a massa che oscilla alla stessa frequenza Unità di misura Si sceglie come campione la durata di un certo evento Si sceglie come campione una massa che oscilli ad una fissata frequenza Analogamente per definire operativamente

Campioni come unità di misura: Campioni come unità di misura: Lunghezza: Lunghezza: 1120 – Enrico I d’Inghilterra: 1120 – Enrico I d’Inghilterra: yard  distanza naso-dito (braccio teso)!!! yard  distanza naso-dito (braccio teso)!!! Fine 1600 – Liugi XIV: piede!!! Fine 1600 – Liugi XIV: piede!!! 1799 – Francia: metro  distanza polo-equatore 1799 – Francia: metro  distanza polo-equatore Fino al 1960: metro  distanza tra due tacche su una barra di Pt-Ir Fino al 1960: metro  distanza tra due tacche su una barra di Pt-Ir Fino al 1983: metro  × della luce di una lampada al 86 Kr Fino al 1983: metro  × della luce di una lampada al 86 Kr Fino ad oggi: metro  distanza percorsa nel vuoto dalla luce in 1/ secondi Fino ad oggi: metro  distanza percorsa nel vuoto dalla luce in 1/ secondi

Campioni come unità di misura: Campioni come unità di misura: Massa: Massa: Chilogrammo  massa di un cilindro di Pt-Ir Chilogrammo  massa di un cilindro di Pt-Ir Campioni come unità di misura: Campioni come unità di misura: Tempo: Tempo: Fino al 1960: secondo  1/(24×60×60) = 1/ del “giorno solare medio del 1900” Fino al 1960: secondo  1/(24×60×60) = 1/ del “giorno solare medio del 1900” Nel 1967: secondo  × periodo di oscillazione della radiazione luminosa emessa dal 133 Cs (orologio atomico) Nel 1967: secondo  × periodo di oscillazione della radiazione luminosa emessa dal 133 Cs (orologio atomico)

Ordini di grandezza Ordini di grandezza Valori approssimati in potenze di 10 Valori approssimati in potenze di 10 Esempio: Distanza terra-sole = 150 milioni di km = Esempio: Distanza terra-sole = 150 milioni di km = = 1.5 × m = 1.5 × m Notazione scientifica: 0.1<valore<99 per potenze di 10 con esponente multiplo di ± 3 Notazione scientifica: 0.1<valore<99 per potenze di 10 con esponente multiplo di ± 3 Esempio: Distanza terra-sole = 0.15 × m = Esempio: Distanza terra-sole = 0.15 × m = = 0.15 Tm = 0.15 Tm esponenteSimbolo (prefisso)esponenteSimbolo (prefisso) -3m (milli)+3k (kilo) -6  (micro)+6M (mega) -9n (nano)+9G (giga) -12p (pico)+12T (tera) -15f (femto)+15P (peta) -18a (atto)+18E (exa) -21z (zepto)+21Z (zetta)

Grandezze fondamentali Grandezze fondamentali Lunghezza Lunghezza Tempo Tempo Massa Massa Talvolta anche carica elettrica, corrente elettrica, etc. etc. Talvolta anche carica elettrica, corrente elettrica, etc. etc. Sistemi di unità di misura Sistemi di unità di misura Plank o naturale (c = 1; G = 1;  = 1) Plank o naturale (c = 1; G = 1;  = 1) CGS CGS Nazionali (USA, britannico, giapponese, …) Nazionali (USA, britannico, giapponese, …) MKS (MKSC, MKSA, …) detto anche Sistema Internazionale (S.I.) MKS (MKSC, MKSA, …) detto anche Sistema Internazionale (S.I.)

Analisi dimensionale Analisi dimensionale Dimensione della grandezza  “natura fisica” Dimensione della grandezza  “natura fisica” indipendente dall’unità di misura!!! indipendente dall’unità di misura!!! Simboli: lunghezza  L; massa  M; tempo  T Simboli: lunghezza  L; massa  M; tempo  T Verifica dimensionale Verifica dimensionale Nelle formule, le “dimensioni” sono trattate come grandezze algebriche Nelle formule, le “dimensioni” sono trattate come grandezze algebriche Esempio: x = ½ a t 2 con [ x ]=L, [ a ]=L T -2 e [ t ]=T Esempio: x = ½ a t 2 con [ x ]=L, [ a ]=L T -2 e [ t ]=T L = [ a ][ t 2 ] = _L_ T 2 = T2 T2 T2 T2 = L equazione dimensionalmente corretta = L equazione dimensionalmente corretta

Conversioni di unità Conversioni di unità Passaggio da unità di un sistema ad un altro Passaggio da unità di un sistema ad un altro Sistema anglosassone S.I. Sistema anglosassone S.I. Esempio: 1 CV  W  0.75 kW Esempio: 1 CV  W  0.75 kW quindi 0.75 kW = 1 (adimensionale!!!!!!) quindi 0.75 kW = 1 (adimensionale!!!!!!) 1 CV 1 CV 150 CV = 150 CV × 0.75 kW = 150 CV = 150 CV × 0.75 kW = 1 CV 1 CV = kW = kW Analogamente: 1 m = 100 cm 1 m_ = 1 Analogamente: 1 m = 100 cm 1 m_ = cm 100 cm quindi: cm = cm × 1 m___ = 123 m quindi: cm = cm × 1 m___ = 123 m 100 cm 100 cm

Sistemi di coordinate Sistemi di coordinate Punto di riferimento (origine) Punto di riferimento (origine) Assi con scala (e nome…) Assi con scala (e nome…) Istruzioni per etichettare i vari punti dello spazio Istruzioni per etichettare i vari punti dello spazio P  ( r,  )  coord. polari P  ( r,  )  coord. polari P  ( x, y )  coord. cartesiane P  ( x, y )  coord. cartesiane

Teoremi sui triangoli rettangoli Teoremi sui triangoli rettangoli b a   c 

Conoscenze matematiche richieste Conoscenze matematiche richieste Geometria piana e solida elementare Geometria piana e solida elementare Area e volume delle più comuni figure geometriche Area e volume delle più comuni figure geometriche Proprietà dei triangoli Proprietà dei triangoli Trigonometria Trigonometria Definizioni e principali teoremi e identità Definizioni e principali teoremi e identità Geometria analitica Geometria analitica Retta, parabola, circonferenza, …. Retta, parabola, circonferenza, …. Analisi matematica Analisi matematica Concetto di limite e derivata, calcolo delle derivate Concetto di limite e derivata, calcolo delle derivate Concetto di integrale, conscenza degli integrali più usati Concetto di integrale, conscenza degli integrali più usati Vettori Vettori Definizione, proprietà ed operazioni elementari Definizione, proprietà ed operazioni elementari