Dispositivi a semiconduttore
Giunzione p-n Consideriamo quello che succede quando due cristalli semiconduttori dello stesso materiale, ma drogati in modo diverso, uno p e l’altro n, sono congiunti. L’interfaccia tra la regione p e quella n è detta giunzione p-n. Essa ha un’estensione dell’ordine di 1 m ed è realizzata in seno ad uno stesso cristallo.
La migrazione di cariche avviene solo nella regione di interfaccia, cioè nella giunzione. Fino a quando avviene questa migrazione di portatori? Fino al raggiungimento di un equilibrio.
La migrazione di e dai livelli donatori della regione n a quelli accettori della regione p comporta la formazione di un doppio strato di cariche che si oppone alla migrazione; quando il campo elettrico (o il potenziale) di questo doppio strato ha raggiunto un valore sufficientemente alto, la migrazione si arresta. All’equilibrio sussisterà una ddp tra i due lati della giunzione che impedisce l’ulteriore passaggio di elettroni dalla regione n a quella p (favorito dal gradiente di concentrazione), come pure il passaggio di lacune dalla regione p a quella n (pure favorito dal gradiente di concentrazione). Equilibrio nello squilibrio. Analogia con la pressione osmotica.
Depletion region
Proprietà raddrizzatrici della giunzione p-n All’equilibrio in una giunzione p-n, gli elettroni migrano con la stessa velocità in entrambe le direzioni, e così pure le lacune. Cosa succede se la giunzione è collegata ad una sorgente esterna di fem? Si possono avere due possibilità. 1) La giunzione è collegata in modo che il suo polo positivo coincida col polo positivo esterno ed il suo polo negativo col polo negativo esterno (reverse bias); 2) La giunzione è collegata in modo che il suo polo positivo coincida col polo negativo esterno ed il suo polo negativo col polo positivo esterno (reverse bias). Nel primo caso la ddp attraverso la giunzione aumenta rispetto al valore di equilibrio, nel secondo caso diminuisce.
+
Giunzioni p-n in Si e Ge sono ampiamente usate come power rectifiers, cioè per convertire una corrente alternata in corrente continua. Una tensione sinusoidale alternata v(t) è convertita in una corrente pulsata pressocché unidirezionale attraverso il carico, dato che la giunzione p-n trasmette una corrente apprezzabile solo nella direzione forward.
Fotocellule Una giunzione p-n reverse biased. Un fotone di adeguata frequenza può promuovere un elettrone nella CB ed una lacuna nella VB. Quindi vengono generati additional carriers. Data la polarità della giunzione, ben pochi elettroni generati nella zona n possono migrare nella zona p a causa della barriera di potenziale, quindi questi vanno soggetti a ricombinazione. Ma quelli generati nella zona p sono rapidamente spostati nella zona n dal campo esistente attraverso la giunzione. Analogamente gli hole generati nella regione n migrano nella regione p. - +
Applicazioni: Fotodiodi, cioè strumenti capaci di rivelare e misurare raggi di fotoni, dai raggi al visibile e infrarosso. La scelta del semiconduttore è legata al suo gap di banda. Per esempio per un fotodiodo attivo nel lontano infrarosso si usa come materiale di base InSb che ha E g = 0.18 eV.
- + Una giunzione p-n illuminata ma non connessa ad una ddp esterna. Gli extra carriers fotogenerati (lacune ed elettroni) migrano rispettivamente nella regione p ed n. In questo modo si produce una corrente fotoindotta I P ed una controdifferenza di potenziale V p attraverso la barriera, con la regione n negativa e quella p positiva (forward bias); Quest’ultima produrrà, a sua volta una corrente forward, I. Se non ci sono connessioni esterne alla giunzione, le due correnti sono uguali. Effetto fotovoltaico
Giunzione p-n illuminata e collegata ad un carico esterno (cella solare)
1) Lo spettro della luce solare ha un massimo alla lunghezza d’onda del verde (h = 2.5 eV). Si devono usare semiconduttori con E g tra 1.0 e 1.5 eV, affinchè la maggior parte dei fotoni incidenti producano coppie elettrone-lacuna. 2) I photocarriers devono essere prodotti sulla giunzione o molto vicino ad essa, per poter contribuire a I P ; quelli prodotti lontano si ricombinano senza effetto sul funzionamento della cella. Perciò la giunzione è localizzata molto vicino alla superficie, e lo spessore dello strato p è circa 1 m in una cella Si. Questo strato molto sottile è la causa della R s, che abbassa il valore della tensione erogata. 3) E’ necessario eliminare la riflessione ottica alla superficie della cella. Efficienza (potenza elettrica rilasciata diviso intensità di luce incidente) = 15 %.