Tutorial: propagazione di un’onda all’interno di una sfera.

Slides:



Advertisements
Presentazioni simili
Fenomeni Ondulatori una perturbazione e’ la variazione rispetto alla configurazione di equilibrio di una o piu’ grandezze caratteristiche di un sistema.
Advertisements

Propagazione del suono in ambiente esterno
Elaborazione numerica del suono
14 ottobre 2010Il Fenomeno Sonoro1 Acustica Applicata Angelo Farina Dip. di Ingegneria Industriale - Università
Large-Eddy Simulations of Turbulent Channel Flows Over Rough Patches
Geometria analitica dello spazio
Biglietti e Ritardi: schema E/R
IL MOTO CIRCOLARE UNIFORME
Lezione 4) L’Equazione Iconale e la propagazione delle onde in mezzi disomogenei.
Prova di recupero corso di Fisica 4/05/2004 Parte A
Elementi di Matematica
. Per incidenza gli angoli sono tutti zero non vi è conversine da P ad SV o da SV a P,via via che l’ angolo cresce aumenta la conversione. Le Equazioni.
Un manipolatore è costituito da un insieme di corpi rigidi (bracci) connessi in cascata tramite coppie cinematiche (giunti) a formare una catena cinematica.
Capacità elettrica Cioè dove C è la capacità del conduttore
FEM -3 G. Puppo.
LE EQUAZIONI DI SECONDO GRADO
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
FENOMENI ONDULATORI Laurea in LOGOPEDIA
Consigli per la risoluzione dei problemi
Un esempio di esame scritto
ONDE ELETTROMAGNETICHE
Prova di Fisica 4 (5 crediti) COGNOME………………….. 25/02/2011 NOME……………………….. 2) Due lenti convergenti, entrambe di lunghezza focale f = 20 cm, distano tra.
13 a lezione di laboratorio Laurea Specialistica in Ingegneria Matematica Ingegneria dei Sistemi Energetici Laurea Specialistica in Ingegneria Matematica.
Il suono e l’udito L’orecchio umano (come quello degli altri animali) e’ capace di percepire le fluttuazioni di pressioni d’aria che arrivano alla membrana.
DBMS ( Database Management System)
Stefano CERONI Sara TOIA
Previsione delle vibrazioni ferroviarie: modelli teorici e agli E.F.
Manipolazione dei dati
Infomatica Grafica a.a DICGIM – University of Palermo Dipartimento di Ingegneria Chimica, Gestionale, Informatica e Meccanica Environment Mapping.
L’orecchio umano L’orecchio funziona come un trasformatore, che converte l’energia sonora in energia meccanica in impulso neurale che viene trasmesso al.
Esercizio_superfici_2
ONDE ELASTICHE Un’onda elastica è una perturbazione che si propaga in un mezzo elastico senza movimento di materia Ogni punto del corpo elastico oscilla.
ONDE ELASTICHE Un’onda elastica è una perturbazione che si propaga in un mezzo elastico senza movimento di materia. Ogni punto del corpo elastico oscilla.
Lezioni di FISICA MEDICA
Analisi dell’interferenza elettromagnetica tra linee ad alta tensione e metanodotti Emiliano D’Alessandro Giovanni Falcitelli*
Onde Sismiche.
Le onde sismiche.
Museo di Fisica acustica
Corso di tecniche della modellazione digitale computer 3D A.A. 2010/2011 docente Arch. Emilio Di Gristina 03.
File e Funzioni Si possono distinguere tre tipi di file che vengono utilizzati in MATLAB: M-file: hanno estensione .m e in essi vengono memorizzati i.
ANIMAZIONE IN 3D DI FLUIDI INCOMPRIMIBILI
PROGETTAZIONE MECCANICA I – A.A
25 ottobre 2010Propagazione in Esterno1 Propagazione del suono in ambiente esterno.
Dischi e cilindri assialsimmetrici
25 ottobre 2010Propagazione in Esterno1 Propagazione del suono in ambiente esterno.
18 ottobre 2010Il Fenomeno Sonoro1 Grandezze fisiche: Le grandezze fisiche più importanti che caratterizzano il fenomeno sonoro sono: Pressione sonora.
Funzione d`onda armonica
Esercizi numerici Prova di Fisica 4 (10 crediti) COGNOME………………….. 6/07/2009 NOME……………………….. 2) Due lenti convergenti, entrambe di lunghezza focale f 1.
Manuale Utente – i-Sisen Questionario del Gas Naturale
Sezioni trasversali e movimenti di materia
LE ONDE.
Università degli studi di Genova Ingegneria Meccanica Energetica
1 Lezione XIII Avviare la presentazione col tasto “Invio”
Sistema di Riferimento Veneto per la Sicurezza nelle Scuole
Filippo M. Campana 4 A Liceo Scientifico /01/ fisicalab
Calcolo sperimentale velocità del suono
Test di Fisica Soluzioni.
I materiali impiegati nelle murature presentano un sistema più o meno continuo di pori attraverso i quali si verifica la migrazione dell’acqua, che è la.
TRASMISSIONE E SCAMBIO DI CALORE si chiama calore l’energia che si trasferisce da un corpo a temperatura maggiore a uno a temperatura più bassa HOEPLI.
Effetto Doppler L.Pietrocola. L’effetto Doppler è un fenomeno che riguarda la propagazione delle onde meccaniche e delle onde elettromagnetiche. Il fenomeno.
FILTRI NUMERICI. Introduzione Nel campo nei segnali (analogici o digitali), un sistema lineare tempo-invariante è in grado di effettuare una discriminazione.
ANALISI DEI SEGNALI Si dice segnale la variazione di una qualsiasi grandezza fisica in funzione del tempo. Ad esempio: la pressione in un punto dello spazio.
Autoresizing e autolayout. Posizionare gli elementi All’interno dello storyboard, gli elementi possono essere posizionati trascinandoli nella posizione.
Metodo degli Elementi finiti applicato ad una lastra forata
Gestire la navigazione. Creare un’app multi Controller La quasi totalità delle app è suddivisa in più ViewControllers, ognuno con specifiche funzionalità.
V. Carassiti - INFN FE 1 Calcolo con Elementi Finiti.
Transcript della presentazione:

Tutorial: propagazione di un’onda all’interno di una sfera

Fase 1: si imposta il tipo di problema e si disegna la geometria

Tutorial: propagazione di un’onda all’interno di una sfera Fase 1: si imposta il tipo di problema e si disegna la geometria Da Preprocessing-> Geometry -> Surfaces -> Non Planar -> Sphere Inserire le coordinate del centro e la lunghezza del raggio, se si opera in maniera corretta, la sfera viene creata come riportato nel Log console

Tutorial: propagazione di un’onda all’interno di una sfera Fase 1: si imposta il tipo di problema e si disegna la geometria Dal comando plot è possibile visualizzare le superfici, mentre da view è possibile cambiare la visuale.

Tutorial: propagazione di un’onda all’interno di una sfera Fase 2: discretizzazione del modello Seguendo la lista Discretization -> Geometry mesh -> Create Occorre modificare il tipo di elementi Nella Maschera del Mark Manager si posso selezionare gli elementi da discretizzare, in questo caso tutti.

Tutorial: propagazione di un’onda all’interno di una sfera Fase 2: discretizzazione del modello Essendo un problema di propagazione interna, occorre modificare la direzione delle normali Path: Geomtry Mesh -> Reverse -> on Surfaces, occorre selezionare tutti gli elementi

Tutorial: propagazione di un’onda all’interno di una sfera Fase 3: creazione del materiale Path: Preprocessing-> Material -> Material editor, si inseriscono le caratteristiche acustiche del materiale

Tutorial: propagazione di un’onda all’interno di una sfera Fase 3: creazione del materiale Path: Preprocessing-> Region Assembly -> New region, si crea una regione a cui si assegna il materiale precedentemente creato

Tutorial: propagazione di un’onda all’interno di una sfera Fase 3: creazione del materiale Path: Preprocessing-> Region Assembly -> Attach/Detach -> Surfaces, collega la regione precedentemente creata alla geometria, tramite il Mark Manager si seleziona tutto il dominio.

Tutorial: propagazione di un’onda all’interno di una sfera Fase 4: creazione del carico da applicare Path: Model & Solving> Load case editor, si crea una forzante armonica con frequenza reale di 2500 e parte immaginaria nulla

Tutorial: propagazione di un’onda all’interno di una sfera Fase 4: creazione del carico da applicare Path: Model & Solving> active Load case -> attach/detach Regions, si applica la forza appena creata alla sfera

Tutorial: propagazione di un’onda all’interno di una sfera Fase 4: creazione del carico da applicare Path: Preprocessing> Waves -> Waves editor, si applica alla fornzante il punto di generazione e la direzione di propagazione

Tutorial: propagazione di un’onda all’interno di una sfera Fase 5: Soluzione Path: Model&Solving> Solving options, si controllano i residui e i parametri di soluzione, nel caso in esame si lasciano i valori di Default

Tutorial: propagazione di un’onda all’interno di una sfera Fase 5: Soluzione Path: Model&Solving> Run Active LC, inizia la risoluzione del problema

Tutorial: propagazione di un’onda all’interno di una sfera Fase 6: Analisi dei risultati Path: Postprocessing> Read Results, implementa i risultati ottenuti, è un’operazione che va sempre fatta al termine del processo di analisi.

Tutorial: propagazione di un’onda all’interno di una sfera Fase 6: Analisi dei risultati Mediante la funzione Plot e selezionando Contour vengono acquisiti i risultati.

Tutorial: propagazione di un’onda all’interno di una sfera Caso particolare: creazione di un Internal point ed export dei risultati È possibile creare degli internal point tramite i quali è possibile acquisire dei parametri ed esportarli. Nel caso in esame verranno creati due punti interni alla sfera e si esporteranno i valori di pressione. Path: Preprocessing> Internal Point -> Create -> By coordinate, vengono creati i due punti

Caso particolare: creazione di un Internal point ed export dei risultati Tutorial: propagazione di un’onda all’interno di una sfera È necessario assegnare la regione e quindi il materiale agli internal point, fatto questo si fa ripartire il solutore

Terminata l’analisi, si caricano i risultati e mediante il comando list-> Intern. Res. È possibile visualizzare le grandezze che si vogliono esportare. Tramite save as, è possibile esportarli per altri programmi. Caso particolare: creazione di un Internal point ed export dei risultati Tutorial: propagazione di un’onda all’interno di una sfera

CASI STUDIO Caso 1: risoluzione del problema di propagazione della pressione acustica all’interno di un cubo Il cubo ha dimensioni: L=1, è caricato alla base con una pressione di 1Pa mentre la parte superiore è scarica. Il materiale è aria con: ρ =1,21 Kg/m 3, c=343 m/s, la frequenza della forzante è di ω= 100 Hz. Il problema deve essere risolto prima come problema 2D e poi 3D Per il caso in esame esiste una soluzione analitica data dalla formula: Dovranno essere creati degli internal point con lo scopo di estrapolare i dati di pressione lungo l’altezza del cubo,

CASI STUDIO Caso 1: risoluzione del problema di propagazione della pressione acustica all’interno di un cubo Mediante l’export dei dati sugli internal point e riportando la risposta ottenuta dalla soluzione analitica, si deve ottenere il grafico sotto.

CASI STUDIO Caso 2: risoluzione del problema di propagazione della pressione acustica all’interno di un tubo. Il cilindro ha raggio esterno b= 4m e raggio interno a=2m, le condizioni al contorno sono le stesse del problema precedentemente studiato: è caricato alla base con una pressione di 1Pa mentre la parte superiore è scarica. Il materiale è aria con: ρ =1,21 Kg/m 3, c=343 m/s, la frequenza della forzante è di ω= 100 Hz. Il problema deve essere risolto prima come problema 2D e poi 3D Dovranno essere creati degli internal point con lo scopo di estrapolare i dati di pressione lungo l’asse del cilindro e riportati nel grafico come sotto:

CASI STUDIO Caso 2: risoluzione del problema di propagazione della pressione acustica all’interno di un tubo.

CASI STUDIO Caso 3: risoluzione di un’interazione fluido-struttura La sfera cava mostrata in figura è circondata d’acqua ed è realizzata in acciaio, il carico è una forzante armonica che insiste sulla superfice interna della sfera, determinare l’andamento della pressione nell’acqua. Le dimensioni e le condizioni al contorno vengono fornite di seguito: a=1m e b= 0.99m P 0 =1Pa ka= 1/6, dove k è il valore della frequenza del fluido, il problema va risolto nel range delle frequenze. Le caratteristiche della sfera in acciaio, che verrà modellata come materiale elastico,sono: E s =2,07*10 7 Pa, ν=0.30 ρ=7180 Kg/m 3, mentre le caratteristiche dell’acqua, che dovrà essere modellata come acustico, sono: v=1500m/s, ρ =1026 Kg/m 3 e damping=1 Dovrà essere creata una function tables con i diversi valori di frequenza e ad ognivalore dovrà essere associato il valore di pressione.

CASI STUDIO Caso 3: risoluzione di un’interazione fluido-struttura

CASI STUDIO Caso 4: risoluzione di un problema fluido struttura 2D Come si nota dalla figura sopra, il sistema è caricato da una pressione costante nel tempo, l’onda acustica si propaga all’interno del fluido e sollecita il materiale elastico posto all’estremità inferiore. Per il caso in esame dovranno essere creati degli internal point posti nell’estremità inferiore del materiale elastico, nella sommità della superficie fluida e all’interfaccia, essi dovranno essere posti con uno step di 0,2 m. infine dovranno essere creati degli internal point lungo l’altezza del modello. Le caratteristiche geometriche e meccaniche del modello sono: a= 4m P = 1 Pa; E= 10 Pa, ν=0 e ρ=1000 Kg/m 3, le caratteristiche del fluido sono v=0,1 m/s, ρ=1000 Kg/m 3 e damping=0. Anche in questo caso occerrerà creare una function table, mentre le boundary condition vanno applicate alla superficie inferiore del modello che deve essere scarica e vincolata.

CASI STUDIO Caso 4: risoluzione di un problema fluido struttura 2D. Di seguito si riportano i grafici relativi allo spostamento e i valori della pressione acustica al variare della lunghezza di rifermento, ottenuti mediante i risultati sugli internal point.

CASI STUDIO Caso 4: risoluzione di un problema fluido struttura 2D. Di seguito si riportano i grafici relativi allo spostamento e i valori della pressione acustica al variare della lunghezza di rifermento, ottenuti mediante i risultati sugli internal point.

CASI STUDIO Caso 5: risoluzione di un problema di propagazione da una sfera radiante La sfera di raggio 2m emette con una velocità di 1 m/s con frequenza di 100 Hz