CHNET_Imaging (LNS, LABEC, Ferrara) Una stazione multi-tecnica per l’imaging elementale in due dimensioni e per la stratigrafia s FASCI IMPIEGATI 1) Protoni esterni da 3.5 MeV con spot circa 2x2 cm2 su linea 80°; 2) Fasci X di alta intensità da tubo X da 3 kW (già operante alla line 20 °) TECHNICHE DA INTEGRARE 1.Full Field PIXE. Alternativa alla tradizionale scansione con micro-fasci di protoni effettuata con CCD+Ottica per raggi X 2.Radiografia risolta in energia con rivelatori TIMEPIX modificati 3.Misure XRF in geometria radente con fasci laminari.
Materials that can benefit of imaging techniques Ancient metals Pottery, glass and enemels Illuminated parchments Paintings
Tecniche di Imaging ai LNS X-RAY Microscopy Risoluzione 1 um Micro FF-XRF Risoluzione 20 um
Macro e micro FULL FIELD X-RAY Fluorescence
Full Field Imaging with polycapillary optics The experimental set-up defines magnification, spatial- resolution and the field of view Advantages with respect to pinholes: very high efficiency Limits with respect pinholes: high cost and no macro-XRF 2D detector Broad X-ray or proton beam Sample XRF image polycapillary
Energy Dispersive X-Ray Fluorescence The charge generated on a pixel of the CCD by a photon of a given energy is proportional to its energy. Single-photon measurements allow to minimize the probability of multiple-hit events and to use the CCD as a conventional energy dispersive X-ray detector A single-photon image contains a limited number of illuminated pixels. A multi-image acquisition is necessary to obtain the statistics for the analysis.
Processing algorithm: a) identifies these groups in each of the SPC frames. b) searches the presence of a single maximum (single-hit) or of relative maxima in the group (multiple-hits); c) checks if the data, starting from the maxima, follow a monotonic trend and if there is an overlap among the identified distribution. Data Processing The single-photon counting (SPC) frame often present multi-pixel groups that should be corrected.
FOM of data processing Pure targets Ti at: 38 kV and 1.7 mA Bin= 2 (512x512) Readout speed= 1 MHz Titanium target in the Macro-FF-XRF set-up Net Count = (about 160 cps) Rejected = 6123 (3% of Net count) Pile-up = 520 (0.27% of Net count) due to a spatial overlap Live Time = 1000 sec. (50 frames of 20 seconds each) Total time = 1200 sec. (including readout and processing time)
Energy Response of the CCD detector The pure targets were irradiated at 35 kV & 1 mA. The acquisition was performed in a single photon mode
Energy Resolution of the CCD detector
Spatial resolution of the FF-XPC
TimePIX detector for fast energy resolved X-ray radiography In order to improve energy resolution and threshold of the system: um thick Silicon instead of 300 um 2.Peltier cooling of the detector, under vacuum set-up 3.Removal of the Al coatings on the surface Distinctive aspects of the detector: 1.Very compact geometry; 2.256x256 pixels of 52 um lateral size 3.Up to 850 frame/second Strong limits for XRS applications: 1.Low energy resolution (0,5-1 keV) 2.Low efficiency in the XRF domain (>5 keV)
X-ray Spectroscopy with TimePIX Preliminary X-ray spectra with a standard version of TimePIXE operating with a multi-frame acquisition in photon counting mode
Pinholes or polycapillary will be used in the energy resolved set-up for changing magnifications and field of view Spatial and energy resolved approach by a TimePIX detector 10 K frames at 0.05 ms exposure time TIMEPix detector with a polycapillary angular filter
Cristallo a mosaicoTubo a raggi X Doppio collimatore Goniometri isocentrici Fascio quasi monocromatico Campione Rivelatore Setup sperimentale per la monocromatizzazione su cristallo
Mass attenuation coefficients μ/ρ (cm 2 /g) Energy (KeV) 17 9 keV 10.3 keV Zn K-edge = 9.65 KeV K-edge differential radiography Ferrara: imaging con raggi X monocromatici
Anonimo, XX sec. Marina campana Olio su tavola Immagine Low Energy 9keV Radiografie monocromatiche Immagine High Energy 10.3keV Distribuzione dell' elemento: Zinco
Laminar beams for grazing incidence XRF and stratigraphic investigations Diode beam alignment SDD detector + Fast DSP (tlist) 3KW X-ray source + optics Polycapillary for quasi parallel beam Pinholes for production of the laminar beam
CHNET_Imaging (LNS) Cognome e NomeQualifica% Romano Francesco PaoloRicercatore CNR80 Pappalardo LigheaRicercatore CNR100 Rizzo FrancescaProf. Associato30 Caliri ClaudiaPhD100 Hellen SantosPost-Doc100 Roberto CatalanoAssegnista Sezione50 Andrea OrlandoBorsista INAF50 FTE totali LNS: 5,1 * In aggiunta altri due laureandi (magistrale)
CHNET_Imaging (Firenze e Ferrara) Cognome e NomeQualifica% Massimo ChiariRicercatore INFN10 Lorenzo GiuntiniProf. Ass.70 Mirko MassiDocente Scuola Sec.40 FTE totali LABEC: 1,2 FTE totali FERRARA: 1,3 Cognome e NomeQualifica% Anna ImpallariaDottorando100 Ferruccio PetrucciProf. Ass.30 FTE totali CHNET_IMAGING: 7.7
CHNET_Imaging (Piano Finanziario 2015) UnitàMiss.Cons.Invent.Appar.Trasp.Totali LNS3,032,08,01,544,5 LABEC/Firenze2,08,09,519,5 Ferrara2,02,57,512,0 TOTALI710,541,515,501,576,00
CHNET_Imaging (LNS): main items Inventario 1. Rivelatore TIMEPIX con modifiche 10.5 k€ (LNS) 2. Gruppo da vuoto 4.5 k€ x 2 (LNS, LABEC) 3. Digital Pulse Processor in TLIST mode 7.5 k (LNS) 4. Shutter Elettro-meccanico per raggi X con 20 ms open/close 5 k€ (LNS) 5. Goniometro motorizzato programmabile 4.5 k€ (LNS) 6. Sistema posizionamento campioni 9.5 k€ (LABEC) Apparati Sistema acquisizione e controllo con CPU NationaI Instruments cRIO 8 k€ Meccanica per radiografie Missioni Misure presso Ferrara, LNS, LANBEC Trasporto Contributo trasporto FF-PIXE da LNS presso LABEC e Ferrara 1.5 k€
CHNET_Imaging: Milestones DescrizioneData completamento Misure FF-PIXE con fasci Protoni presso LNS e LABEC Set-up per radiografia risolta in energia con rivelatore TIMEPIX; Test comparativi con Sez. Ferrara su tecniche alternative di radiografia Sviluppo e test del sistema GI-XRF Realizzazione del set-up integrato FF-PIXE, ER-XRR, GI-XRF e misure simultanee integrando le tecniche