GAPS: General AntiParticle Spectrometer Indirect Dark Matter Searches With Cosmic Antideuterons Giuseppe Osteria Consiglio di Sezione, Napoli 6 luglio 2017
Dark Matter searches the identification of dark matter will likely require several complementary approaches: direct detection of dark matter via its interaction in underground detectors new physics searches at collider experiments indirect detection of dark matter using the secondary particles produced in dark matter annihilation or decay
Galactic Dark Matter Signals Halo signals Charged Leptonic CR: e± Charged Baryonic CR: antiP, antiD, antiHe Photons Gamma-rays Prompt production IC from e± on ISRF and CMB X-rays Radio Synchro from e± on mag. field Neutrinos Local signals Direct detection Neutrinos from Earth and Sun Dark matter halo Diffusive halo Disk Sun Earth
Cosmic antiprotons DM signal Produced in the DM halo Dark matter halo Diffusive halo Disk DM signal Produced in the DM halo Earth Heliosphere Secondaries (background) Sun Produced in the disk
Cosmic antideuterons DM signal Coalescence Secondaries (background) Donato, Fornengo, Salati, PRD 62 (2000) 043003 Dark matter halo Diffusive halo Disk DM signal Coalescence Produced in the DM halo Secondaries (background) Sun Heliosphere Earth Produced in the disk
The low-energy window At production: background and DM have different kinematics and source spectra N. Fornengo
Low-energy Antideuterons and Antiprotons: Unexplored Phase Space 𝐷 measurement 𝑝 measurement
GAPS: obiettivi scientifici Antideuterons as DM signatures no astrophysical background at low energy complementary to direct/indirect searches and collider experiments search for: light DM, heavy DM, gravitino DM, LZP in extra-dimensions theories, (evaporating PBH) Antiprotons as DM and PBH signatures precision flux measurement at ultra-low energy (E < 0.25 GeV) complimentary to direct/indirect searches and collider experiments ~ 10 times more statistics @ 0.2 GeV, compared to BESS/PAMELA search for: light DM, gravitino DM, LZP in extra-dimensions theories, evaporating PBH Expected to launch from Antarctica in 2020/2021 1 LDB flight (~35 days) -> precision antiproton flux measurement ~1500 antiprotons in GAPS E< 0.25 GeV, while 30 for BESS, 7 for PAMELA at E~ 0.25 GeV 2 LDB flights (~70 days) -> improved antideuteron statistics Antideuteron sensitivity: ~3.0 x 10-6 [m-2s-1sr-1(GeV/n)-1] at E < 0.25 GeV 3 LDB flights (~105 days) -> Antideuteron sensitivity: ~2.0 x 10-6 [m-2s-1sr-1(GeV/n)-1] at E < 0.25 GeV
Lo strumento TOF plastic scintillators -outer TOF: 3.6m x 3.6m, 2m height -inner TOF: 1.6m x 1.6m, 2m height -1m b/w outer and inner TOFs -500 ps timing resolution -16.5 cm wide plastic paddles -PMT on each end Si(Li) detectors -10 layers, 1.6m x 1.6m -layer space: 20 cm -Si(Li) wafer (~1500 wafers) -4 inch diameter -2.5mm thick wafer -12 x 12 rectangular -segmented into 4 strips 3D particle tracking -timing resolution: ~ 100 ns -energy resolution: 3 keV -operation temperature: -35 C -dual channel electronics X-ray: 20 -80 keV charged particles: 0.1 -100 MeV Cooling system -oscillating heat pipe (OHP) -demonstrated in pGAPS Science weight: ~1700 kg
Detection concept
𝑫 vs 𝒑 identification Based on: Time-of-light measurement along antiparticle trajectory Multiple dE/dx measurements X-ray energies Pion/proton multiplicity T. Aramaki et al., AstroPh 74 (2016) 6, arXiv: 1506.02513
Stato e prospettive Presentata e approvata s.j. in CSN2 (luglio 2016) la proposta di adesione italiana al progetto GAPS (USA-Giappone) Proposta GAPS approvata dalla NASA fine 2016 Inizio attività (kick off meeting) marzo 2017 (UCLA) Proposto accordo ASI-INFN GAPS (2017-2020) da 1 M€ (ancora in discussione) Riunione della (proto) collaborazione italiana 7 giugno 2017
La Collaborazione ORNL C.J. Hailey (PI), T. Aramaki, N. Madden, K. Mori Columbia University S.E. Boggs University of California, Berkeley F. Gahbauer University of Latvia H. Fuke, S. Okazaki, T. Yoshida Institute of Space & Astronautical Science, Japan Aerospace Exploration Agency P. von Doetinchem University of Hawaii, Honolulu R.A. Ong, S.A.I Mognet, J. Zweerink University of California, Los Angeles ORNL L. Fabris, K.P. Ziock Oak Ridge National Laboratory K. Perez Massachusetts Institute of Technology Trieste, Firenze, Napoli, Pavia, Roma II, Torino
Team responsabilities and workflow HVPS
Attività GAPS Napoli Realizzazione apparato: Simulazioni Montecarlo Progettazione e realizzazione sistema di alte tensioni per i rivelatori a silicio (Si(Li)). Circa 1350 canali (300V, 2 µA) controllabili singolarmente da terra. Range operativo di temperatura (-20 +40) °C. Range operativo di pressione 5 - 10 mbar Simulazioni Montecarlo Composizione del gruppo: D. Campana I Ric. 50% G. Osteria I Ric. 50% B. Panico Ass. 60% F. Perfetto Ass. 30% V. Scotti Ass. 60% Totale 2.5 FTE
HV regulator Block diagram error ampl. DAC1 Vmon OR detector error ampl. Vmon DAC2 Imon Controlled series pass element Imon -300V Enable G. Osteria
HV regulator control & readout To control the HV regulator and monitor (V and I) we need: 1 ADC to monitor voltage (Vmon) 1 ADC to monitor current (Imon) 1 DAC to set the voltage (Vset) 1 DAC to set the current (Iset) 1 digital line to enable the regulator Microcontroller Micro controller HV regulator Vmon Imon Vset Iset Enable USB G. Osteria
HV power control & monitoring for GAPS Assuming 1350 Si(Li) detectors to bias, we need: 2 x 1350 = 2700 DACs (or PWM outputs) to set V and Imax 2 x 1350 = 2700 ADCs to monitor voltages and currents 1350 digital lines (to enable/disable the channel) MicroControllers with a high number of embedded ADCs and PWM outputs i.e. STMicroelectronics STM32L476VG Ultra-low-power with FPU ARM Cortex-M4 MCU 80 MHz G. Osteria
HV power control & monitoring for GAPS HV board 48 channels EMCO -300V RS232 Micro Controller STM32L476VG 8 HV 8 HV regulators HV output Connector (Radiall 52 pins) RS232 Micro Controller STM32L476VG 8 HV 8 HV regulators Micro Controller STM32L476VG 8 HV 8 HV regulators Micro Controller STM32L476VG 8 HV 8 HV regulators Micro Controller STM32L476VG 8 HV 8 HV regulators Micro Controller STM32L476VG 8 HV 8 HV regulators G. Osteria
HV power control & monitoring for GAPS Estimated budgets (1350 channels): Power Low Voltage ~ 30 W (regulators) + ~ 30W ? microcontroller High Voltage ~ 1W Volume 2 VME crates Mass ~ 10 kg Cost ~ 50 $ per channel ~ 68000 $ G. Osteria
Attivita’ 2018 Richieste ai servizi della Sezione: Servizio Elettronica e Rivelatori (16 settimane) Disegno e realizzazione prototipo scheda a 32 canali del sistema HV per i rivelatori Si(Li) dell’esperimento GAPS. Servizio Progettazione Meccanica (4 settimane) Progetto della meccanica del sistema HV per i rivelatori Si(Li) dell’esperimento GAPS. Servizio Officina Meccanica (6 settimane) Realizzazione della meccanica del sistema HV per i rivelatori Si(Li) dell’esperimento GAPS. Servizio Calcolo (4 settimane) Assistenza e contributo alla scrittura del software di controllo del sistema HV per i rivelatori Si(Li) dell’esperimento GAPS. Richieste economiche: (k€) 2018 Missioni ≈20,0 Consumo ≈20,0 Costruz. apparato 0,0 s.j. ≈65,0 (finanz. ASI) Totale ≈40,0 s.j. ≈65,0 In caso di approvazione dell’accordo ASI-INFN: A Napoli responsabilità del WP ‘Sistema HV’ Finanziamento richiesto 350 k€ di cui: 150 k€ costruzione apparato 200 k€ personale (Rtd-a + Cter (1 anno)
Dark Matter annihilations